
	
	
	
	
	
	

Classifying Ocean Plankton Using Multiclass
Ensemble Techniques For Imbalanced Data

Jim Caine
caine.jim@gmail.com

March, 2015
DePaul University

Abstract
Classification on imbalanced datasets is a relevant topic for many real-world
datasets. Various ensemble techniques have been proposed to deal with class
imbalance. SMOTEBoost [1] and RUSBoost [2] are two leading approaches. In
this paper, SMOTEBoost and RUSBoost are extended to a multinomial
classification problem with imbalanced data. In both techniques, the main idea
is to balance the classes using a random sampling procedure before each round of
boosting. This idea is extended to two additional synthetic oversampling
procedures using class centroids instead of k-nearest neighbors. Finally, random
synthetic oversampling procedures are used as a pre-processing step before fitting
random forests.

Keywords: Imbalanced classification, multinomial classification, SMOTEBoost,
RUSBoost, AdaBoost, SMOTE, minority oversampling, plankton

1 Introduction
The study of plankton population in the ocean is of great interest to marine scientists because
plankton population is a good indicator of ocean and ecosystem health. Researchers at Oregon
State University have captured over 50 million images of plankton, resulting in over 80 TB of
image data that must be analyzed. Manual analysis is not feasible, as one day’s of image would
take a year or more to manually analyze. This paper introduces an image classification algorithm
to accurately predict the species of each plankton, and thus, allowing researchers to estimate the
population of particular plankton throughout the ocean.

A major obstacle in image classification is representing the image as a set of features. Feature
extraction has been studied extensively, and therefore, is not a major concentration of this paper.
Three simple rules are described in Feature Mining for Image Classification [3], stating that the
features extracted from an image should be informative, invariant to noise, and fast to compute.
Based on these rules, two different approaches are used to extract features from the images in the
dataset: radial boundary features and region features. These methods are explored in further
detail in Section 3.1.

The dataset of interest consists of 30,000 images of plankton from 121 unique classes. As shown
in Figure 1, the distribution of the classes in the dataset varies greatly from species to species.
For example, the dataset contains 1,979 images of the majority species (trichodesmium puff), but
only 10 instances of the most minority species. This imbalance in the dataset is likely to cause
classification algorithms to be biased towards the species that have a larger number of instances
(the majority class). This suspicion is confirmed after fitting several standard models to the
dataset by comparing the recall for the minority classes and the majority classes.

Figure 1: A histogram of the number of instances per species in the dataset shows large class

imbalance in the dataset.

Several variations of the AdaBoost M.2 algorithm have been proposed to solve the class
imbalance problem. Two leading approaches are SMOTEBoost [1] and RUSBoost [2]. In both
techniques, the training data is modified at each boosting round to better balance the sample. In
this paper, both SMOTEBoost and RUSBoost are extended to a multiclass algorithm by
oversampling each class proportionally to balance the total dataset. These algorithms are then
applied to the plankton dataset to classify each image into 1 of the 121 species. SMOTEBoost is
then generalized to handle two new synthetic oversampling techniques that create synthetic
vectors by projecting to the class centroid as opposed to a k-nearest neighbor that is done in
SMOTE. Finally, the three synthetic oversampling techniques explored in the AdaBoost
algorithm are used as a preprocessing step before fitting a random forest classifier to the data.

2 Related Work
Multiple frameworks for classification on imbalanced datasets have been proposed in the past.
Galar et al. [4] survey common ensemble-based learning algorithms that are used to for
classification on imbalanced datasets. In particular, an overview of common oversampling
techniques is presented and a taxonomy for ensemble based-learning algorithms on imbalanced
data is proposed. Within the taxonomy, there are four main branches: cost-sensitive boosting,
boosting-based ensembles, bagging-based ensembles, and hybrid ensembles. Cost-sensitive
boosting updates the weights of the minority class differently than the majority class. Boosting-
based ensembles alter the weight distribution used to train the next classifier toward the minority
class at each iteration. Bagging-based ensembles use a new sample of data (favoring the minority
class) for each classifier. Finally, hybrid ensembles combine both the bagging and boosting
techniques discussed prior.

SMOTEBoost [1] and RUSBoost [2] fall under the boosting-based ensembles branch and are both
variations of the AdaBoost M.2 algorithm [5]. The AdaBoost M.2 algorithm is a variation of the
original AdaBoost algorithm. In the AdaBoost M.2 algorithm, each instance is initialized a set of
weights. For T iterations, a random sample of the data is selected based on the weights and a
weak leaner is trained on this random sample of data. The pseudo-loss is calculated and the
weights on each of the instances in the test set are recalculated. A complete description of the
AdaBoost M.2 algorithm can be found in Freund and Schapire’s paper ‘Experiments with a New
Boosting Algorithm’.

SMOTEBoost utilizes the AdaBoost M.2 algorithm, except randomly injects synthetic samples of
the minority class into the training set at each boosting round to reduce the bias towards the
majority class in the model. The synthetic samples are created using a technique called SMOTE
(Synthetic Minority Oversampling TEchnique) [6]. SMOTE creates synthetic samples by
projecting each minority instance towards the difference between that instance and one of it’s k-
nearest neighbors. The magnitude of the projection is randomly chosen in each dimension.
Instead of applying SMOTE to the dataset before training an AdaBoost M.2 model, it is found
that randomly injecting the synthetic samples during each iteration increases performance. By
injecting synthetic samples of the minority class instances, the margin for the minority class is
extended and therefore it should be easier for a weak learner to identify the minority cases. The
random injection of synthetic samples also increases the diversity of the classifiers, as each

classifier is presented with different synthetic samples. The amount of SMOTE that is added to
the minority class is a parameter and will vary for different datasets.

RUSBoost (Random Undersampling Boost) utilizes the same algorithm as SMOTEBoost,
however, instead of randomly injecting synthetic samples into the training set at each boosting
round, RUSBoost reduces the size of the training set by randomly deleted instances from the
majority class. The amount to instances to delete from the majority class is a parameter similar
to the amount of SMOTE added to the minority class in SMOTEBoost. The primary advantages
of RUSBoost compared to SMOTEBoost is in the speed of the algorithm. RUSBoost decreases
the size of the training set, while SMOTEBoost increases the size of the training set, meaning
that RUSBoost has far smaller training times. Also RUSBoost does not have to generate random
synthetic samples during each round of boosting. The primary drawback to RUSBoost is loss of
information inherent with sampling the majority class. This is often not the case, however, as
many datasets show similar if not better performance on RUSBoost than SMOTEBoost.

Many other frameworks and sampling procedures that exist that have not been mentioned and
are beyond the scope of this paper. A particular interesting approach is MSMOTEBoost [7].
(Modified SMOTEBoost). In MSMOTE, each instance is labeled as noise, safe, or a border point
according to the composition to it’s k-nearest neighbors. In theory, this should reduce the
amount of noise that is being added to the dataset through the synthetic vectors. The label of
can also be incorporated in the AdaBoost M.2 algorithm by reducing the weights of noise points
during each boosting round.

	
3 Methodology
The experiments performed in this paper are applied to a dataset released by Kaggle in the
National Data Science Bowl competition. The dataset consists of images of plankton. The
dataset is split into a training set and a validation set, where the training set has a class label for
each image, indicating which species the plankton is from out of 121 possible species. Because the
validation set of data contains no class labels, it is not used throughout the paper. The training
set contains over 30,000 images. The training set goes through a series of preprocessing steps as
described in Section 3.1 to extract features from the raw image and normalize the features. The
remaining dataset is then split into a training and testing set of data.

The majority of the algorithms evaluated in this paper rely on creating random synthetic
instances of the minority class. Because it be computationally intensive to create new synthetic
example at each iteration in an ensemble algorithm, synthetic vectors for each instance in the
dataset are created a priori. This process is detailed in Section 3.2.

In Section 3.3, SMOTEBoost and RUSBoost are extended to a multinomial classification
problem. Each algorithm is written to accept : the base learner, the number of classifiers in the
ensemble (number of boosting rounds), and a ratio that controls the amount of synthetic minority
instances that are added before each boosting round. The SMOTEBoost is then extended to
handle other random oversampling techniques.

3.1 Feature Extraction and Preprocessing
Before applying any ensemble algorithms for classification, the images in the dataset must first be
transformed into a feature set using feature extraction. The images of the plankton are not
naturally aligned, meaning that the orientation and depth of plankton in the images vary, even if
they are among the same class. Sample images for five different classes of plankton are shown in
Figure 2. Although plankton of the same class appear similar by the eye, the image sizes,
rotation of the plankton, and appearance of the plankton can differ greatly. Therefore, features
that are extracted must be robust to the rotation and size of the images. Two different
techniques fitting this criterion are used: (largest) region features and radial density features.

Figure 2: Images of five plankton for five separate classes show noise amongst the images

Radial image features are computed by looking at the color intensities (grey-scale pixel values) in
radially symmetric regions across a square image. Each image is first resized to a NxN square
image. The first region is the 4x4 square in the middle of the resized image. The pixel values in
the four pixels contained in the 4x4 square are found, and four features describing the mean,
standard deviation, skew, and kurtosis of the pixel values are used as features. Next, the square
expands to an 8x8 square, but excludes any pixels that have already been used (in the 4x4
square). The same process is applied to this region and four additional features are found for
each image. Figure 3 shows the regions for a 32x32 image. In this analysis, all the images were
reshaped to a 16x16 pixel image, resulting in 4 distinct square regions and 16 attributes.

	

	
Figure 3: Example of Radial Boundaries For A 32x32 Image

	
This second feature extraction technique used in this analysis is region features. A number of
mutations are performed on the image, resulting in the ability for the image to segment different
regions of the image. Figure 4 shows examples of the image mutation process. First, the original
image is converted into a binary scale based on a threshold of the mean pixel value of the image.
The white pixels in the image are then dilated so that a 4x4 radius of each white pixel is turned
white. This dilation is performed to decrease the noise of the image and therefore the noise in the
amount of regions found. Regions are then found by finding parts of the image that have no
connecting white pixels. The image can then be rotated and resized for direct pixel to pixel
comparison, but this is not applied to the dataset to avoid redundancy at the benefit of dealing
with less features in the dataset and decreased training times. Overall, six region features are
used in this analysis and are described in Table 1.

Attribute Description
Number of regions The total number of disconnected regions after dilation

Eccentricity
The ratio between the distance between the minor and major axis of the

largest region
Convex area The number of pixels of the convex hull image of largest region

Convex to total area
The convex area of largest region divided by the total area of largest

region

Extent
The ratio of pixels in the largest region to the pixels in the total bounding

box
Filled area The number of pixels of the largest region

Table 1: Description of Features Extracted By Analyzing Largest Region

	
Figure 4: Series of mutations applied to each image to find the largest region and compare

pixel by pixel features
	
The final dataset consists of 30,336 images and 22 numeric features. 70% of the dataset is then
randomly partitioned into a train set and 30% is partitioned into a test set to test the
classification algorithms.	
	
	
3.2 Generating Synthetic Samples and Synthetic Datasets
Because it is computationally intensive to calculate synthetic data at each round of boosting in
AdaBoost for multiple iterations and trials, a large amount of synthetic vectors for each instance
in the training data is created a priori. In particular, three synthetic datasets are created: (1)
SMOTE, (2) projection from class centroid (PFCC), and (3) projection from instance to class
centroid (PFITCC). As described in Section 2, the SMOTE algorithm finds a k-nearest neighbor
for each instance and projects the original instance in the direction of the different between the k-
nearest neighbor and that instance at a random magnitude of zero through one. PFITCC works
very similarly, except instead of projecting towards the different of a k-nearest neighbor, this
technique projects the instance in the direction of the difference between that instance and the
class centroid. Again, the magnitude of the projection is random in each dimension between zero
and one. PFCC is slightly different, in that it does not consider each instance in the train set.
Instead, it simply looks at the class centroid in the train set to generate synthetic instances. This
technique simply projects randomly from the class centroid. For each technique, the magnitude
of the projection can be changed using the parameter proj_ratio. This simply magnifies the
random vector between zero and one by the proj_ratio. For example, if it is desired to increase
the magnitude of the projections by a factor of two, a proj_ratio equal to 2 would be appropriate.

Algorithms 1-3 describe the three minority oversampling techniques used in this analysis. In
SMOTE, the k-nearest neighbors is set to 1, meaning that the projection for each instance is
always towards the instance’s k-nearest neighbor. This seems like the most appropriate choice for
this dataset due to the large magnitude of the number of classes. Changing this parameter could
provide interesting results and is saved for future work. Various settings for the proj_ratio
parameter are testing ranging 0.1 to 1.0.

Psuedo-algorithm 1: SMOTE	
Input: Dataset D, parameter proj_ratio
synthetic_vectors = []
For each instance (i) in D
 Find the k-nearest neighbors of i
 Randomly choose one of the k-nearest neighbors
 Calculate the distance between the k-nearest neighbor and i
 Randomly adjust the magnitude of the difference by multiplying each dimension by a random
 number between 0 and proj_ratio
 Add the new difference to the original instance
 Append the new instance to the synthetic vector list

Psuedo-algorithm 2: PFCC	
Input: Dataset D, parameter proj_ratio
synthetic_vectors = []
For each class (c) in D:
 Find the class centroid
 For N times:
 Randomly project from the class centroid in each dimension from –proj_ratio to +proj_ratio
 Append the new instance to the synthetic vector list

Psuedo-algorithm 3: PFITCC	
Input: Dataset D, parameter proj_ratio
synthetic_vectors = []
For each instance (i) in D
 Find the class centroid for the instance
 Calculate the distance between the class centroid and i
 Randomly adjust the magnitude of the difference by multiplying each dimension by a random
 number between 0 and proj_ratio
 Add the new difference to the original instance
 Append the new instance to the synthetic vector list

The three sampling techniques provide an interesting relationship. SMOTE should be able to
provide extended margins for the minority cases, but may be increasing noise in the dataset by
projecting towards instances that are not of the same class. Using the cluster centroid instead
should push the samples towards the cluster centroid, thus reducing noise at the cost of
decreasing the margin for that particular class. Using the projections directly from the cluster
center (PFCC) is an extreme case of PFITCC.

Various datasets are created a priori by combing the synthetic datasets and the dataframe
containing the test and train data. Special attention is taken to remove the test instances from
the synthetic dataset to ensure that the model will not be trained with test data.
	
	
3.3 AdaBoost M.2 With Random Oversampling
As described in Section 2, SMOTEBoost and RUSBoost are variations of the AdaBoost M.2
algorithm but randomly vary the training data before the model is fit during each boosting
round. Following the same variation, SMOTEBoost is extended to the two additional sampling
procedures that are described in Section 3.2: PFCC and PFITCC. The general algorithm for
these three approaches is outlined in Algorithm 4. RUSBoost follows nearly the same algorithm,
however, instead of adding synthetic instances from the minority class, RUSBoost randomly
deletes some of the instances in the majority class.

Algorithm 4: AdaBoost M.2 With Random Oversample Injection For Multinomial Classification	
Given: Set S with corresponding labels, parameter synthetic_ratio
Initialize: Number of synthetic samples to generate for each class
 Weights of the initialize dataset (set to 1/# instances)
For t = 1, 2, 3, … , T:
 Identify hard cases by randomly sampling data points according to their weights
 For each class:
 Generate (synthetic_ratio * number of synthetic samples to generate for specific class)
 synthetic samples
 Train a weak learner on training set
 Calculate the error on original data set
 Update beta
 Update weights on original data set
Return: Class with highest vote OR weighted probability predictions

There are only two noticeable differences between Algorithm 4 and SMOTEBoost. First,
Algorithm 4 only states to generate synthetic data, where as SMOTEBoost insists that the
synthetic data is generated using SMOTE. Second, Algorithm 4 must initialize the number of
synthetic samples to generate for each class. SMOTEBoost only concentrates on imbalanced
binary classification tasks, and thus, does not provide a technique for understanding how many
synthetic samples of each class must be generated. In Algorithm 4, the number of synthetic
samples generated for each class is determined by an initialization of the number of synthetic
samples needed to generate for each class and a parameter synthetic_ratio. For this multiclass
problem, the number of synthetic examples to generate for each class is equal to the number of
instances of the most majority class minus the number of instances for that particular class. The
synthetic_ratio parameter than magnifies that by a factor equal to the ratio. This is slightly
different for RUSBoost, where the number of samples for each class is equal to the minimum of
all the classes or a constant (rus_ratio).	
	
	
	
	

4 Results
Experiments on the algorithms and datasets discussed in Section 3 are applied to the plankton
dataset to assess performance. Each classifier is evaluated by accuracy and multiclass log loss.
Both train and test metrics are calculated to evaluate if the classifier over fits the dataset.
Multiclass log loss is the multiclass equivalent of the logarithmic loss metric. This metric is
improved when the prediction of the correct class is close to one, and is discounted when the
prediction of the correct class is far from one. Good performing algorithms have a multiclass log
loss value close to zero, while worse performing algorithms have higher multiclass log loss values.
The formula for multiclass log loss is below:

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1
𝑁
∗ 𝑦!,! ∗ log (𝑝!,!)

!

!!!

!

!!!

where:
N is the number of observations
M is the number of class labels
yi,j is equal to one when the instance is in class j and zero otherwise
pi,j is the predicted probability that instance i is in class j

First, the AdaBoost M.2 algorithm along with the random minority sample injections discussed in
Section 3 are applied to the dataset. The parameters are presented in Table 2. The minority
sampling technique indicates how the training instances are sampled before training the model in
each iteration of the AdaBoost M.2 algorithm. No sampling is equivalent to AdaBoost M.2 and
SMOTE sampling is equivalent to SMOTEBoost. The number of estimators indicates how many
models will be trained. The synthetic ratio controls how many synthetic instances will be added
to the train set. A synthetic ratio of 1.0 indicates that the sum of real instances and synthetic
instances will be equal for all classes. The performance for all iterations can be found in
Appendix A.

Parameter Parameter Values

Minority sampling technique
None (AdaBoost M.2), SMOTE

(SMOTEBoost), PFCC, PFITCC, RUS
Number of estimators (boosting rounds) 2, 5, 10, 20

Synthetic ratio 0.01, 0.1, 1
Table 2: Parameters For AdaBoost M.2 Minority Sample Injection Algorithm

As shown in Figure 5, the AdaBoost algorithm performs very poorly and the performance
actually decreases as the number of iterations grows. This is likely because of two reasons. First,
the AdaBoost algorithm selects the instances that have already been misclassified. If these
instances represent noise in the data, then the resulting classifiers in the ensemble are being
trained on noisy data. Second, the base learner is a very simple decision tree with a maximum
depth of 2. This particular weak learner may not be strong enough for the multiclass problem.
Future work will need to be put in to test if performance increases as the weak learner actually
gets stronger.

Figure 5: The AdaBoost model on all datasets actually decreases in performance as the

number of iterations increase most likely due to the algorithm selecting noisy data or the
weak classifier not being strong enough – ABM.2 and PFFCBoost1 have infinite multiclass log

loss values at n_estimators = 20

Finally, a random forest algorithm is applied to the data. The parameters that are varied are
presented in Table 3. The preprocessing sample procedure indicates what dataset is used to train
the model. It is important to note that special attention is made to remove all instances in the
test sample from the train sample to ensure validity of the test data. The number of synthetic
minority cases in each dataset is chosen to be the difference between the number of samples in
the majority class and the number of samples in that particular minority class, thus ensuring a
balanced set of data. Different ratios can be tested in future work to optimize class balance. The
projection distance refers to the magnitude of the projection in each synthetic instance as
described in Section 3.2. The dataset grows very large after the synthetic oversampling
techniques are applied. Therefore, training an ensemble classifier becomes computationally
intensive. Because of this, the number of trees in the ensemble is limited to 25. For the original
dataset, the number of trees is increased to 1,000. The performance for all iterations can be
found in Appendix A.

Parameter Parameter Values
Preprocessing sample procedure None, SMOTE, PFCC, PFITCC

Projection distance 0.1, 1.0
Number of estimators (trees) 5,10,25

Max depth 10, 20, 30
Table 3: Parameters Random Forest Algorithm

As shown in Figure X, the random forest algorithm performs much better when the number of
trees is increased, but at diminishing returns for very large number of trees. The classifiers with
larger numbers of max depth perform poorly at low number of trees in the forest, but quickly
improve as trees are added to the forest. This is likely because the more complex model is overfit
at number of trees, but is soon generalized as the number of diverse classifiers in the ensemble
increases. A similar graph is shown in Figure X but shows the random forest performance on
synthetically sampled datasets. The SMOTEBoost algorithm performs the best out of all
sampling procedures that are tested. This indicates that the expanding the margin of the
minority class proves to be the best approach for this multiclass problem. Overall, random forest
with the SMOTE dataset is the best performer. In fact, the random forest on the SMOTE with
25 trees outperforms the random forest on the original dataset with 1,000 trees. Also, as seen in
Figure X, the more complex base learners (higher max depth) increase their performance with
little trees added to the model. This is likely because the training set is larger and therefore a
more complex base learner is necessary to find the patterns in the data. The downside to this is
a much longer training time, but because the performance improves quickly in the first few
iterations, the random forest on the SMOTE dataset is the preferred algorithm.

Figure 6: Random Forest (no sample) model performs better when more trees are in the

ensemble. More complex base learners perform poor at smaller values of number of trees but
quickly outperform the more simple base learners whose performance remains constant

Figure 7: Random Forest on dataset with synthetic minority oversampling performance shows

that SMOTEBoost is the best performer and outperforms Random Forest on the original
dataset with far less trees in the model

Figure 8: Random Forest performance for varying depths shows that more complex base

learners quickly generalize their model only after a few iterations

As seen in Table 4, the top performing ensemble classifier was the random forest classifier on the
SMOTE dataset. In general, the random forest classifiers outperformed the AdaBoost classifiers.
As discussed earlier in this section, this is likely because AdaBoost prefers to sample misclassified
instances, which are likely noise in the dataset. The random forest classifier does very well using
more complicated base learners and the model quickly generalizes to the test set as the forest
grows with trees.

Algorithm Optimal Parameters Train
Accuracy

Test
Accuracy

Train
MC Log

Loss

Test MC
Log Loss

AdaBoost M.2 n_estimators=2;
synthetic_rate=.01

13.75% 14.41% 3.795 3.807

RUSBoost n_estimators=100, rr=100 7.78% 7.60% 4.189 4.340
SMOTEBoost n_estimators=2;

proj_ratio=1.0;
synthetic_rate=0.1

4.42% 4.90% 4.656 4.675

PFITCCBoost n_estimators=2;
proj_ratio=1.0;

synthetic_rate=0.1

5.70% 6.45% 4.551 4.545

PFCCBoost n_estimators=2;
proj_ratio=3.0;

synthetic_rate=0.1

4.63% 13.69% 3.738 3.793

Random
Forest

n_trees = 1,000;
max_depth=20

99.95% 47.58% 0.427 2.084

Random Forest
SMOTE

n_trees = 25;
max_depth=20

99.49% 77.85% 0.262 1.255

Random Forest
PFITCC

n_trees = 10; max_depth=20;
proj_ratio=0.5

98.36% 60.48% 0.321 1.969

Random Forest
PFCC

n_trees = 25; max_depth=10;
proj_ratio=0.5

69.89% 23.27% 1.843 3.224

Table 4: Optimum results for all ensemble algorithms show Random Forest on the SMOTE
dataset is the best performing classifier

	
	
5 Conclusions and Future Work
Various ensemble learning algorithms are applied to the real-world dataset of plankton images in
an attempt to minimize the multiclass log loss value. First, boosting algorithms that inject
random samples of synthetic data (or undersamples for RUSBoost) are applied to the dataset.
These boosting algorithms did not improve the classification over a even a weak learner, and in
fact, decreased performance over each iteration. This is likely because the AdaBoost algorithm
prefers to select misclassified examples which is often the noisiest points in the data.

Synthetic sampling techniques were also used to preprocess the dataset to balance the minority
classes and then are applied to the random forest classifier with great success. The size of the
dataset is increased due to the injection of many synthetic samples and this causes the training

time to increase greatly. That being said, more complex learners (deep decision trees) are seen to
generalize their model to the test data after adding very few trees to the random forest. Overall,
the random forest with the SMOTE dataset is the best performing classifier. After adding only
25 trees to the forest, the test multiclass log loss reached a minimum of 1.255, nearly 2 times
better than any other classifier. The SMOTE dataset is thought to outperform the datasets with
synthetic instances based on cluster because the SMOTE dataset increases the margin for the
minority cases, allowing the classifier to become less biased towards the majority cases.

This research has sparked a lot of curiosity into why the AdaBoost algorithm did not perform
better. Future work could be directed to understanding why this occurs and trying to correct it.
In particular, the MSMOTE boost algorithm described in Section 2 could utilized to increase the
samples of safe cases and decrease the noise that goes into each iteration of the AdaBoost
algorithm. Further, computational limitations capped the number of trees grown in the Random
Forest SMOTE classifier at 25. Deeper forests should be attempted on this algorithm to see how
much more performance can be improved.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

6 Appendix A – Results
Boosting	 Algorithms	

bl	 ne	 sd	 sr	 acctrain	 acctest	 kstrain	 kstest	
DT(max_depth=2)	 2	 m2	 0.01	 13.75%	 14.41%	 3.7948	 3.8073	
DT(max_depth=2)	 2	 m2	 0.1	 13.72%	 14.40%	 3.7944	 3.8262	
DT(max_depth=2)	 2	 m2	 1	 13.64%	 14.29%	 3.7925	 3.8236	
DT(max_depth=2)	 2	 smote1	 0.01	 4.42%	 4.90%	 4.6559	 4.6754	
DT(max_depth=2)	 2	 smote1	 0.1	 0.11%	 0.09%	 5.8797	 5.8930	
DT(max_depth=2)	 2	 smote1	 1	 0.10%	 0.09%	 6.9835	 6.9961	
DT(max_depth=2)	 2	 smote2	 0.01	 4.66%	 5.26%	 4.6078	 4.6299	
DT(max_depth=2)	 2	 smote2	 0.1	 0.10%	 0.09%	 5.9770	 5.9924	
DT(max_depth=2)	 2	 smote2	 1	 0.10%	 0.09%	 6.9976	 7.0103	
DT(max_depth=2)	 2	 smote3	 0.01	 5.20%	 6.16%	 4.6239	 4.6190	
DT(max_depth=2)	 2	 smote3	 0.1	 0.10%	 0.11%	 6.0109	 6.0076	
DT(max_depth=2)	 2	 smote3	 1	 0.09%	 0.08%	 6.9576	 6.9669	
DT(max_depth=2)	 2	 smote01	 0.01	 5.04%	 5.66%	 4.5958	 4.6237	
DT(max_depth=2)	 2	 smote01	 0.1	 0.10%	 0.11%	 5.9084	 5.9142	
DT(max_depth=2)	 2	 smote01	 1	 0.10%	 0.11%	 6.9164	 6.9253	
DT(max_depth=2)	 2	 smote05	 0.01	 4.72%	 5.38%	 4.6610	 4.6789	
DT(max_depth=2)	 2	 smote05	 0.1	 0.10%	 0.10%	 5.9194	 5.9236	
DT(max_depth=2)	 2	 smote05	 1	 0.10%	 0.10%	 6.9248	 6.9341	
DT(max_depth=2)	 5	 m2	 0.01	 13.84%	 14.70%	 8.4945	 8.4205	
DT(max_depth=2)	 5	 m2	 0.1	 13.95%	 14.77%	 7.7386	 7.6613	
DT(max_depth=2)	 5	 m2	 1	 14.54%	 15.30%	 8.8064	 8.7183	
DT(max_depth=2)	 5	 smote1	 0.01	 4.53%	 5.09%	 4.7542	 4.7597	
DT(max_depth=2)	 5	 smote1	 0.1	 0.10%	 0.09%	 5.9719	 5.9844	
DT(max_depth=2)	 5	 smote1	 1	 0.10%	 0.09%	 6.9846	 6.9970	
DT(max_depth=2)	 5	 smote2	 0.01	 4.70%	 5.26%	 4.8515	 4.8456	
DT(max_depth=2)	 5	 smote2	 0.1	 0.10%	 0.09%	 5.9799	 5.9838	
DT(max_depth=2)	 5	 smote2	 1	 0.10%	 0.09%	 6.9478	 6.9569	
DT(max_depth=2)	 5	 smote3	 0.01	 4.70%	 5.24%	 4.7780	 4.7591	
DT(max_depth=2)	 5	 smote3	 0.1	 0.09%	 0.08%	 5.9387	 5.9353	
DT(max_depth=2)	 5	 smote3	 1	 0.09%	 0.09%	 7.0044	 7.0112	
DT(max_depth=2)	 5	 smote01	 0.01	 3.34%	 3.98%	 4.8702	 4.8597	
DT(max_depth=2)	 5	 smote01	 0.1	 0.12%	 0.14%	 5.7745	 5.7711	
DT(max_depth=2)	 5	 smote01	 1	 0.10%	 0.11%	 6.9155	 6.9237	
DT(max_depth=2)	 5	 smote05	 0.01	 3.37%	 3.99%	 4.7383	 4.7303	
DT(max_depth=2)	 5	 smote05	 0.1	 0.10%	 0.10%	 5.9679	 5.9849	
DT(max_depth=2)	 5	 smote05	 1	 0.10%	 0.10%	 6.9223	 6.9317	
DT(max_depth=2)	 10	 m2	 0.01	 13.97%	 14.73%	 8.1956	 8.1911	

DT(max_depth=2)	 10	 m2	 0.1	 13.82%	 14.60%	 8.7592	 8.6410	
DT(max_depth=2)	 10	 m2	 1	 13.91%	 14.68%	 9.2985	 9.2883	
DT(max_depth=2)	 10	 smote1	 0.01	 4.00%	 4.55%	 9.4871	 9.4283	
DT(max_depth=2)	 10	 smote1	 0.1	 0.10%	 0.09%	 5.9711	 5.9953	
DT(max_depth=2)	 10	 smote1	 1	 0.10%	 0.09%	 6.9852	 6.9984	
DT(max_depth=2)	 10	 smote2	 0.01	 4.11%	 4.68%	 10.3752	 10.3766	
DT(max_depth=2)	 10	 smote2	 0.1	 0.09%	 0.09%	 5.9969	 6.0099	
DT(max_depth=2)	 10	 smote2	 1	 0.10%	 0.09%	 6.9985	 7.0114	
DT(max_depth=2)	 10	 smote3	 0.01	 4.19%	 4.84%	 9.4191	 9.4183	
DT(max_depth=2)	 10	 smote3	 0.1	 0.08%	 0.08%	 6.0107	 6.0173	
DT(max_depth=2)	 10	 smote3	 1	 0.09%	 0.08%	 6.9506	 6.9597	
DT(max_depth=2)	 10	 smote01	 0.01	 3.36%	 3.97%	 6.6498	 6.6101	
DT(max_depth=2)	 10	 smote01	 0.1	 0.10%	 0.11%	 5.9121	 5.9202	
DT(max_depth=2)	 10	 smote01	 1	 0.10%	 0.11%	 6.9234	 6.9300	
DT(max_depth=2)	 10	 smote05	 0.01	 3.77%	 4.27%	 9.6985	 9.6546	
DT(max_depth=2)	 10	 smote05	 0.1	 0.10%	 0.10%	 5.9179	 5.9238	
DT(max_depth=2)	 10	 smote05	 1	 0.10%	 0.10%	 6.9293	 6.9365	
DT(max_depth=2)	 20	 m2	 0.01	 13.92%	 14.74%	 8.7495	 8.8442	
DT(max_depth=2)	 20	 m2	 0.1	 0.11%	 0.11%	 n/a	 n/a	
DT(max_depth=2)	 20	 m2	 1	 14.03%	 14.96%	 n/a	 n/a	
DT(max_depth=2)	 20	 smote1	 0.01	 0.07%	 0.05%	 n/a	 n/a	
DT(max_depth=2)	 20	 smote1	 0.1	 0.10%	 0.09%	 5.9728	 5.9968	
DT(max_depth=2)	 20	 smote1	 1	 0.10%	 0.09%	 6.9837	 6.9976	
DT(max_depth=2)	 20	 smote2	 0.01	 0.07%	 0.05%	 n/a	 n/a	
DT(max_depth=2)	 20	 smote2	 0.1	 0.10%	 0.11%	 6.0528	 6.0619	
DT(max_depth=2)	 20	 smote2	 1	 0.10%	 0.09%	 6.9972	 7.0098	
DT(max_depth=2)	 20	 smote3	 0.01	 4.27%	 4.88%	 8.1236	 8.2222	
DT(max_depth=2)	 20	 smote3	 0.1	 0.10%	 0.11%	 6.0215	 6.0144	
DT(max_depth=2)	 20	 smote3	 1	 0.09%	 0.08%	 7.0238	 7.0318	
DT(max_depth=2)	 20	 smote01	 0.01	 3.96%	 4.56%	 9.2005	 9.2072	
DT(max_depth=2)	 20	 smote01	 0.1	 0.10%	 0.11%	 5.9120	 5.9266	
DT(max_depth=2)	 20	 smote01	 1	 0.10%	 0.11%	 6.9168	 6.9260	
DT(max_depth=2)	 20	 smote05	 0.01	 0.07%	 0.08%	 n/a	 n/a	
DT(max_depth=2)	 20	 smote05	 0.1	 0.10%	 0.10%	 5.9151	 5.9226	
DT(max_depth=2)	 20	 smote05	 1	 0.10%	 0.10%	 6.9252	 6.9345	
DT(max_depth=2)	 2	 PFFC1	 0.01	 14.39%	 13.75%	 3.7479	 3.7989	
DT(max_depth=2)	 2	 PFFC1	 0.1	 14.25%	 13.67%	 3.8901	 3.9368	
DT(max_depth=2)	 2	 PFFC1	 1	 6.78%	 6.84%	 4.7206	 4.7458	
DT(max_depth=2)	 2	 PFFC2	 0.01	 14.38%	 13.75%	 3.7424	 3.7954	
DT(max_depth=2)	 2	 PFFC2	 0.1	 14.90%	 14.34%	 3.8516	 3.8839	

DT(max_depth=2)	 2	 PFFC2	 1	 7.40%	 7.35%	 4.7269	 4.7553	
DT(max_depth=2)	 2	 PFFC3	 0.01	 14.63%	 13.96%	 3.7381	 3.7935	
DT(max_depth=2)	 2	 PFFC3	 0.1	 14.82%	 14.41%	 3.8726	 3.9041	
DT(max_depth=2)	 2	 PFFC3	 1	 7.27%	 7.22%	 4.7159	 4.7203	
DT(max_depth=2)	 2	 PFFC0.1	 0.01	 14.36%	 13.73%	 3.7718	 3.8325	
DT(max_depth=2)	 2	 PFFC0.1	 0.1	 14.38%	 13.74%	 3.8929	 3.9459	
DT(max_depth=2)	 2	 PFFC0.1	 1	 6.43%	 6.42%	 4.6912	 4.7291	
DT(max_depth=2)	 2	 PFFC0.5	 0.01	 14.28%	 13.66%	 3.7746	 3.8263	
DT(max_depth=2)	 2	 PFFC0.5	 0.1	 14.17%	 13.80%	 3.8956	 3.9469	
DT(max_depth=2)	 2	 PFFC0.5	 1	 6.56%	 6.54%	 4.7580	 4.7815	
DT(max_depth=2)	 5	 PFFC1	 0.01	 14.36%	 13.85%	 6.9594	 6.8914	
DT(max_depth=2)	 5	 PFFC1	 0.1	 14.20%	 13.84%	 4.8619	 4.8343	
DT(max_depth=2)	 5	 PFFC1	 1	 11.00%	 10.78%	 4.6271	 4.6524	
DT(max_depth=2)	 5	 PFFC2	 0.01	 14.34%	 13.81%	 6.9701	 6.9357	
DT(max_depth=2)	 5	 PFFC2	 0.1	 14.40%	 13.76%	 5.0362	 4.9784	
DT(max_depth=2)	 5	 PFFC2	 1	 7.40%	 7.32%	 4.7497	 4.7837	
DT(max_depth=2)	 5	 PFFC3	 0.01	 14.48%	 13.98%	 7.5928	 7.5666	
DT(max_depth=2)	 5	 PFFC3	 0.1	 14.82%	 14.40%	 4.9921	 4.9479	
DT(max_depth=2)	 5	 PFFC3	 1	 7.30%	 7.25%	 4.7458	 4.7644	
DT(max_depth=2)	 5	 PFFC0.1	 0.01	 14.32%	 13.81%	 6.8529	 6.8527	
DT(max_depth=2)	 5	 PFFC0.1	 0.1	 14.30%	 13.79%	 6.1076	 6.1352	
DT(max_depth=2)	 5	 PFFC0.1	 1	 14.43%	 13.74%	 4.4901	 4.5230	
DT(max_depth=2)	 5	 PFFC0.5	 0.01	 14.34%	 14.01%	 6.0305	 6.0025	
DT(max_depth=2)	 5	 PFFC0.5	 0.1	 14.25%	 13.88%	 5.8942	 5.8299	
DT(max_depth=2)	 5	 PFFC0.5	 1	 9.23%	 8.97%	 4.5412	 4.5864	
DT(max_depth=2)	 10	 PFFC1	 0.01	 14.40%	 13.87%	 7.5799	 7.4431	
DT(max_depth=2)	 10	 PFFC1	 0.1	 14.20%	 13.66%	 5.5445	 5.4122	
DT(max_depth=2)	 10	 PFFC1	 1	 6.32%	 5.99%	 5.5176	 5.4582	
DT(max_depth=2)	 10	 PFFC2	 0.01	 14.42%	 13.97%	 7.8320	 7.7040	
DT(max_depth=2)	 10	 PFFC2	 0.1	 14.45%	 13.85%	 n/a	 n/a	
DT(max_depth=2)	 10	 PFFC2	 1	 6.85%	 6.65%	 5.3508	 5.3412	
DT(max_depth=2)	 10	 PFFC3	 0.01	 14.34%	 13.85%	 7.1594	 7.1105	
DT(max_depth=2)	 10	 PFFC3	 0.1	 14.52%	 13.98%	 5.6136	 5.6338	
DT(max_depth=2)	 10	 PFFC3	 1	 6.87%	 6.67%	 5.1924	 5.1752	
DT(max_depth=2)	 10	 PFFC0.1	 0.01	 14.33%	 13.79%	 7.5982	 7.5606	
DT(max_depth=2)	 10	 PFFC0.1	 0.1	 14.29%	 13.77%	 n/a	 n/a	
DT(max_depth=2)	 10	 PFFC0.1	 1	 13.73%	 13.37%	 6.9196	 6.7867	
DT(max_depth=2)	 10	 PFFC0.5	 0.01	 14.40%	 13.88%	 7.0989	 7.0338	
DT(max_depth=2)	 10	 PFFC0.5	 0.1	 14.25%	 13.87%	 n/a	 n/a	
DT(max_depth=2)	 10	 PFFC0.5	 1	 9.24%	 8.99%	 5.4483	 5.3962	

DT(max_depth=2)	 20	 PFFC1	 0.01	 14.31%	 13.78%	 7.8000	 7.6724	
DT(max_depth=2)	 20	 PFFC1	 0.1	 0.58%	 0.48%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC1	 1	 0.58%	 0.47%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC2	 0.01	 0.20%	 0.20%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC2	 0.1	 0.13%	 0.14%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC2	 1	 0.11%	 0.14%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC3	 0.01	 0.16%	 0.11%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC3	 0.1	 0.19%	 0.21%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC3	 1	 0.12%	 0.12%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC0.1	 0.01	 14.40%	 13.89%	 7.5922	 7.5077	
DT(max_depth=2)	 20	 PFFC0.1	 0.1	 0.65%	 0.57%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC0.1	 1	 0.73%	 0.60%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC0.5	 0.01	 0.63%	 0.57%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC0.5	 0.1	 0.78%	 0.65%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFFC0.5	 1	 0.61%	 0.54%	 n/a	 n/a	
DT(max_depth=2)	 2	 PFITCC1	 0.01	 5.70%	 6.45%	 4.5512	 4.5453	
DT(max_depth=2)	 2	 PFITCC1	 0.1	 0.10%	 0.08%	 6.0651	 6.0671	
DT(max_depth=2)	 2	 PFITCC1	 1	 0.10%	 0.12%	 7.0764	 7.0847	
DT(max_depth=2)	 2	 PFITCC2	 0.01	 0.10%	 0.14%	 4.6972	 4.6984	
DT(max_depth=2)	 2	 PFITCC2	 0.1	 0.06%	 0.05%	 6.1302	 6.1209	
DT(max_depth=2)	 2	 PFITCC2	 1	 0.08%	 0.12%	 6.9633	 6.9533	
DT(max_depth=2)	 2	 PFITCC3	 0.01	 4.77%	 5.62%	 4.8223	 4.8241	
DT(max_depth=2)	 2	 PFITCC3	 0.1	 0.05%	 0.10%	 6.1022	 6.0950	
DT(max_depth=2)	 2	 PFITCC3	 1	 0.08%	 0.05%	 7.1396	 7.1442	
DT(max_depth=2)	 2	 PFITCC0.1	 0.01	 4.94%	 5.73%	 4.6686	 4.6765	
DT(max_depth=2)	 2	 PFITCC0.1	 0.1	 0.10%	 0.10%	 5.9749	 5.9824	
DT(max_depth=2)	 2	 PFITCC0.1	 1	 0.11%	 0.12%	 6.9570	 6.9625	
DT(max_depth=2)	 2	 PFITCC0.5	 0.01	 4.91%	 5.70%	 4.7499	 4.7429	
DT(max_depth=2)	 2	 PFITCC0.5	 0.1	 0.12%	 0.13%	 6.0304	 6.0320	
DT(max_depth=2)	 2	 PFITCC0.5	 1	 0.11%	 0.09%	 7.0721	 7.0806	
DT(max_depth=2)	 5	 PFITCC1	 0.01	 4.79%	 5.38%	 4.7473	 4.7306	
DT(max_depth=2)	 5	 PFITCC1	 0.1	 0.12%	 0.14%	 5.8455	 5.8307	
DT(max_depth=2)	 5	 PFITCC1	 1	 0.10%	 0.12%	 7.0724	 7.0811	
DT(max_depth=2)	 5	 PFITCC2	 0.01	 4.87%	 5.55%	 4.9140	 4.9152	
DT(max_depth=2)	 5	 PFITCC2	 0.1	 0.12%	 0.16%	 5.8796	 5.8654	
DT(max_depth=2)	 5	 PFITCC2	 1	 0.08%	 0.12%	 6.9706	 6.9607	
DT(max_depth=2)	 5	 PFITCC3	 0.01	 5.10%	 5.79%	 4.8553	 4.8361	
DT(max_depth=2)	 5	 PFITCC3	 0.1	 0.08%	 0.05%	 6.0968	 6.0872	
DT(max_depth=2)	 5	 PFITCC3	 1	 0.08%	 0.05%	 7.1371	 7.1416	
DT(max_depth=2)	 5	 PFITCC0.1	 0.01	 8.22%	 8.75%	 5.4570	 5.4256	

DT(max_depth=2)	 5	 PFITCC0.1	 0.1	 0.11%	 0.11%	 5.9677	 5.9761	
DT(max_depth=2)	 5	 PFITCC0.1	 1	 0.11%	 0.12%	 6.9561	 6.9642	
DT(max_depth=2)	 5	 PFITCC0.5	 0.01	 4.59%	 5.23%	 4.7656	 4.7444	
DT(max_depth=2)	 5	 PFITCC0.5	 0.1	 0.10%	 0.08%	 6.0667	 6.0644	
DT(max_depth=2)	 5	 PFITCC0.5	 1	 0.11%	 0.09%	 7.0695	 7.0776	
DT(max_depth=2)	 10	 PFITCC1	 0.01	 4.71%	 5.31%	 9.0054	 9.0589	
DT(max_depth=2)	 10	 PFITCC1	 0.1	 0.11%	 0.14%	 5.9447	 5.9314	
DT(max_depth=2)	 10	 PFITCC1	 1	 0.10%	 0.12%	 7.0715	 7.0802	
DT(max_depth=2)	 10	 PFITCC2	 0.01	 5.12%	 5.80%	 9.2794	 9.3348	
DT(max_depth=2)	 10	 PFITCC2	 0.1	 0.07%	 0.07%	 6.1033	 6.0907	
DT(max_depth=2)	 10	 PFITCC2	 1	 0.08%	 0.12%	 6.9625	 6.9526	
DT(max_depth=2)	 10	 PFITCC3	 0.01	 5.18%	 5.85%	 7.7897	 7.7844	
DT(max_depth=2)	 10	 PFITCC3	 0.1	 0.06%	 0.05%	 6.1192	 6.1093	
DT(max_depth=2)	 10	 PFITCC3	 1	 0.08%	 0.05%	 7.1334	 7.1378	
DT(max_depth=2)	 10	 PFITCC0.1	 0.01	 9.71%	 10.26%	 7.0443	 7.1659	
DT(max_depth=2)	 10	 PFITCC0.1	 0.1	 0.11%	 0.13%	 5.8398	 5.8457	
DT(max_depth=2)	 10	 PFITCC0.1	 1	 0.11%	 0.12%	 6.9551	 6.9631	
DT(max_depth=2)	 10	 PFITCC0.5	 0.01	 4.43%	 5.11%	 6.8456	 6.8082	
DT(max_depth=2)	 10	 PFITCC0.5	 0.1	 0.12%	 0.13%	 6.0394	 6.0489	
DT(max_depth=2)	 10	 PFITCC0.5	 1	 0.10%	 0.09%	 7.0621	 7.0612	
DT(max_depth=2)	 20	 PFITCC1	 0.01	 4.69%	 5.24%	 6.2073	 6.2826	
DT(max_depth=2)	 20	 PFITCC1	 0.1	 0.09%	 0.11%	 5.9558	 5.9408	
DT(max_depth=2)	 20	 PFITCC1	 1	 0.10%	 0.12%	 7.0713	 7.0801	
DT(max_depth=2)	 20	 PFITCC2	 0.01	 0.03%	 0.05%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFITCC2	 0.1	 0.09%	 0.12%	 5.9760	 5.9663	
DT(max_depth=2)	 20	 PFITCC2	 1	 0.08%	 0.12%	 6.9625	 6.9521	
DT(max_depth=2)	 20	 PFITCC3	 0.01	 0.05%	 0.07%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFITCC3	 0.1	 0.06%	 0.05%	 6.1206	 6.1087	
DT(max_depth=2)	 20	 PFITCC3	 1	 0.08%	 0.05%	 7.1392	 7.1439	
DT(max_depth=2)	 20	 PFITCC0.1	 0.01	 0.08%	 0.07%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFITCC0.1	 0.1	 0.12%	 0.15%	 5.8024	 5.7965	
DT(max_depth=2)	 20	 PFITCC0.1	 1	 0.12%	 0.15%	 6.8158	 6.8158	
DT(max_depth=2)	 20	 PFITCC0.5	 0.01	 0.06%	 0.07%	 n/a	 n/a	
DT(max_depth=2)	 20	 PFITCC0.5	 0.1	 0.12%	 0.13%	 6.0263	 6.0279	
DT(max_depth=2)	 20	 PFITCC0.5	 1	 0.11%	 0.09%	 7.0743	 7.0828	

Random	 Forest	 Classifer	 -‐	 No	 Sample	
ne	 md	 accuracy_train	 accuracy_test	 mc_log_loss_train	 mc_log_loss_test	
5	 2	 15.86%	 15.96%	 3.65646221	 3.659814638	
5	 5	 27.68%	 26.95%	 2.978382498	 3.053164438	
5	 8	 40.00%	 34.56%	 2.384451244	 2.761472697	
5	 12	 59.76%	 38.04%	 1.606248503	 3.41803069	
5	 20	 92.52%	 36.37%	 0.579238351	 12.15523472	
10	 2	 18.12%	 18.20%	 3.644333379	 3.650867267	
10	 5	 29.61%	 28.75%	 2.96623739	 3.02175835	
10	 8	 41.84%	 36.42%	 2.323205605	 2.604492179	
10	 12	 66.10%	 41.60%	 1.479559115	 2.77784376	
10	 20	 98.27%	 40.45%	 0.454570525	 8.179245335	
50	 2	 18.86%	 18.84%	 3.589976148	 3.597810412	
50	 5	 31.28%	 30.71%	 2.873714376	 2.930872392	
50	 8	 44.49%	 38.78%	 2.257638008	 2.499522584	
50	 12	 73.36%	 44.00%	 1.402655152	 2.248857407	
50	 20	 99.90%	 45.86%	 0.436081925	 3.345892459	
100	 2	 19.07%	 19.01%	 3.613359275	 3.621705954	
100	 5	 31.19%	 30.29%	 2.892438585	 2.949323645	
100	 8	 44.71%	 38.90%	 2.251457676	 2.494842505	
100	 12	 74.85%	 44.65%	 1.386887025	 2.200414008	
100	 20	 99.89%	 47.14%	 0.431681969	 2.773702755	
500	 2	 19.54%	 19.63%	 3.595192243	 3.60131927	
500	 5	 31.64%	 31.01%	 2.872620474	 2.931047333	
500	 8	 45.10%	 39.08%	 2.248481384	 2.488562245	
500	 12	 74.73%	 44.96%	 1.386963368	 2.169464222	
500	 20	 99.94%	 47.77%	 0.426680803	 2.146094544	
1000	 2	 19.45%	 19.47%	 3.600660372	 3.607777661	
1000	 5	 31.60%	 30.81%	 2.877222381	 2.934210603	
1000	 8	 45.06%	 39.14%	 2.250669617	 2.491227361	
1000	 12	 74.80%	 44.99%	 1.38519683	 2.164146552	
1000	 20	 99.95%	 47.58%	 0.426608441	 2.083879454	

Random	 Forest	 -‐	 SMOTE	
ne	 md	 syn_ratio	 accuracy_train	 accuracy_test	 mc_log_loss_train	 mc_log_loss_test	
5	 10	 0.5	 51.89%	 25.85%	 2.179412467	 2.949158335	
5	 20	 0.5	 96.69%	 64.73%	 0.312032372	 2.112198461	
5	 30	 0.5	 99.66%	 71.84%	 0.074481757	 4.196351346	
10	 10	 0.5	 58.78%	 31.53%	 2.064751102	 2.809229298	
10	 20	 0.5	 99.04%	 74.00%	 0.244772965	 1.445118484	
10	 30	 0.5	 99.97%	 80.15%	 0.066079415	 2.231766901	
25	 10	 0.5	 64.01%	 33.93%	 2.023840689	 2.787906274	
25	 20	 0.5	 99.49%	 77.85%	 0.262312275	 1.254746625	
25	 30	 0.5	 100.00%	 85.20%	 0.064746901	 1.293404519	
5	 10	 1	 50.69%	 25.97%	 2.209165784	 2.969920688	
5	 20	 1	 96.02%	 55.04%	 0.346688738	 2.746045132	
5	 30	 1	 99.42%	 59.07%	 0.110902087	 6.288656555	
10	 10	 1	 57.49%	 30.40%	 2.133689492	 2.874051295	
10	 20	 1	 98.41%	 63.08%	 0.314590669	 1.784275036	
10	 30	 1	 99.96%	 69.08%	 0.094518857	 3.354829784	
25	 10	 1	 61.14%	 32.27%	 2.119691166	 2.864756031	
25	 20	 1	 99.39%	 69.26%	 0.294716897	 1.517997831	
25	 30	 1	 100.00%	 76.30%	 0.090615809	 1.712460275	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Random	 Forest	 -‐	 PFITCC	
ne	 md	 syn_ratio	 accuracy_train	 accuracy_test	 mc_los_log_train	 mc_loss_log_test	
5	 10	 0.5	 49.37%	 27.95%	 2.296690699	 2.959694874	
5	 20	 0.5	 95.78%	 52.38%	 0.359809383	 3.018893921	
5	 30	 0.5	 99.33%	 55.01%	 0.129170639	 7.835474459	
10	 10	 0.5	 56.24%	 30.19%	 2.209740208	 2.899273712	
10	 20	 0.5	 98.36%	 60.48%	 0.320298596	 1.969066367	
10	 30	 0.5	 99.94%	 64.29%	 0.105409343	 4.018578153	
25	 10	 0.5	 60.84%	 33.27%	 2.17405015	 2.866985382	
25	 20	 0.5	 99.27%	 66.91%	 0.316588363	 1.586020443	
25	 30	 0.5	 100.00%	 71.55%	 0.102343941	 1.994630145	
5	 10	 1	 45.72%	 25.75%	 2.454661142	 3.068062858	
5	 20	 1	 94.64%	 43.04%	 0.442414416	 3.740611706	
5	 30	 1	 99.00%	 44.04%	 0.174626332	 10.2676816	
10	 10	 1	 51.34%	 28.69%	 2.431257895	 3.030722939	
10	 20	 1	 97.70%	 50.87%	 0.398527537	 2.372574461	
10	 30	 1	 99.91%	 51.54%	 0.148396292	 6.135746862	
25	 10	 1	 56.89%	 31.10%	 2.361427182	 2.969330032	
25	 20	 1	 98.98%	 55.91%	 0.378728422	 1.925858317	
25	 30	 1	 99.99%	 58.70%	 0.141907109	 3.11784503	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Random	 Forest	 -‐	 PFCC	
ne	 md	 syn_ratio	 accuracy_train	 accuracy_test	 ks_train	 ks_test	
5	 10	 0.5	 52.11%	 18.60%	 2.266635744	 3.750206689	
5	 20	 0.5	 92.96%	 30.24%	 0.436304996	 10.95185734	
5	 30	 0.5	 97.72%	 30.16%	 0.195417296	 16.47959482	
10	 10	 0.5	 61.22%	 20.19%	 2.069884558	 3.52627106	
10	 20	 0.5	 94.01%	 33.75%	 0.506758027	 5.901364403	
10	 30	 0.5	 99.17%	 33.48%	 0.165254697	 12.35572728	
25	 10	 0.5	 69.89%	 23.27%	 1.842882604	 3.223602055	
25	 20	 0.5	 95.76%	 36.04%	 0.490112406	 3.963745432	
25	 30	 0.5	 99.60%	 37.29%	 0.151962956	 8.043519976	
5	 10	 1	 33.52%	 18.00%	 2.818005436	 3.710479788	
5	 20	 1	 62.08%	 27.10%	 1.645831955	 5.444494388	
5	 30	 1	 87.19%	 28.08%	 0.765767616	 11.87629111	
10	 10	 1	 37.22%	 20.57%	 2.775915867	 3.489148117	
10	 20	 1	 71.11%	 29.67%	 1.486865664	 4.280336517	
10	 30	 1	 92.54%	 32.20%	 0.732354435	 7.79340079	
25	 10	 1	 41.34%	 20.96%	 2.68581997	 3.414183245	
25	 20	 1	 75.71%	 31.38%	 1.475895377	 3.419149224	
25	 30	 1	 96.98%	 34.35%	 0.664771429	 5.40673444	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

References
[1] Chawla, N. V.; Lazarevic, A.; Hall, L. O. & Bowyer, K. W. (2003), SMOTEBoost: Improving

Prediction of the Minority Class in Boosting., in Nada Lavrac; Dragan Gamberger; Hendrik
Blockeel & Ljupco Todorovski, ed., 'PKDD' , Springer, , pp. 107-119 .

[2] Seiffert, C.; Khoshgoftaar, T. M.; Hulse, J. V. & Napolitano, A. (2008), RUSBoost: Improving
classification performance when training data is skewed., in 'ICPR' , IEEE, , pp. 1-4 .

[3] Dollár, P.; Tu, Z.; Tao, H. & Belongie, S. (2007), Feature Mining for Image
Classification., in 'CVPR' , IEEE Computer Society, .

[4] Galar, M.; Fernández, A.; Tartas, E. B.; Sola, H. B. & Herrera, F. (2012), 'A Review on
Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based
Approaches.', IEEE Transactions on Systems, Man, and Cybernetics, Part C 42 (4) , 463-484

[5] AdaBoost M.2: Y.FreundandR.Schapire,“Experimentswithanewboostingalgorithm,” in Proc.
13th Int. Conf. Mach. Learn., 1996, pp. 148–156.

[6] Chawla, N. V.; Bowyer, K. W.; Hall, L. O. & Kegelmeyer, W. P. (2002), 'SMOTE: Synthetic
Minority Over-sampling Technique',Journal of Artificial Intelligence Research 16 , 321--357 .

[7] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving classification performance when

training data is imbalanced,” in Proc. 2nd Int. Workshop Comput. Sci. Eng., 2009, vol. 2, pp.
13–17.

