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Abstract 
Classification on imbalanced datasets is a relevant topic for many real-world 
datasets.  Various ensemble techniques have been proposed to deal with class 
imbalance.  SMOTEBoost [1] and RUSBoost [2] are two leading approaches.  In 
this paper, SMOTEBoost and RUSBoost are extended to a multinomial 
classification problem with imbalanced data.  In both techniques, the main idea 
is to balance the classes using a random sampling procedure before each round of 
boosting.  This idea is extended to two additional synthetic oversampling 
procedures using class centroids instead of k-nearest neighbors.  Finally, random 
synthetic oversampling procedures are used as a pre-processing step before fitting 
random forests. 
 
Keywords: Imbalanced classification, multinomial classification, SMOTEBoost, 
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1 Introduction 
The study of plankton population in the ocean is of great interest to marine scientists because 
plankton population is a good indicator of ocean and ecosystem health.  Researchers at Oregon 
State University have captured over 50 million images of plankton, resulting in over 80 TB of 
image data that must be analyzed.  Manual analysis is not feasible, as one day’s of image would 
take a year or more to manually analyze.  This paper introduces an image classification algorithm 
to accurately predict the species of each plankton, and thus, allowing researchers to estimate the 
population of particular plankton throughout the ocean.  
 



A major obstacle in image classification is representing the image as a set of features.  Feature 
extraction has been studied extensively, and therefore, is not a major concentration of this paper.  
Three simple rules are described in Feature Mining for Image Classification [3], stating that the 
features extracted from an image should be informative, invariant to noise, and fast to compute.  
Based on these rules, two different approaches are used to extract features from the images in the 
dataset: radial boundary features and region features.  These methods are explored in further 
detail in Section 3.1. 
 
The dataset of interest consists of 30,000 images of plankton from 121 unique classes.  As shown 
in Figure 1, the distribution of the classes in the dataset varies greatly from species to species.  
For example, the dataset contains 1,979 images of the majority species (trichodesmium puff), but 
only 10 instances of the most minority species.  This imbalance in the dataset is likely to cause 
classification algorithms to be biased towards the species that have a larger number of instances 
(the majority class).  This suspicion is confirmed after fitting several standard models to the 
dataset by comparing the recall for the minority classes and the majority classes. 
 

 
Figure 1: A histogram of the number of instances per species in the dataset shows large class 

imbalance in the dataset. 
 
 
 
 
 
 



Several variations of the AdaBoost M.2 algorithm have been proposed to solve the class 
imbalance problem.  Two leading approaches are SMOTEBoost [1] and RUSBoost [2].  In both 
techniques, the training data is modified at each boosting round to better balance the sample.  In 
this paper, both SMOTEBoost and RUSBoost are extended to a multiclass algorithm by 
oversampling each class proportionally to balance the total dataset.  These algorithms are then 
applied to the plankton dataset to classify each image into 1 of the 121 species.  SMOTEBoost is 
then generalized to handle two new synthetic oversampling techniques that create synthetic 
vectors by projecting to the class centroid as opposed to a k-nearest neighbor that is done in 
SMOTE.  Finally, the three synthetic oversampling techniques explored in the AdaBoost 
algorithm are used as a preprocessing step before fitting a random forest classifier to the data.    
 
 
2 Related Work 
Multiple frameworks for classification on imbalanced datasets have been proposed in the past.  
Galar et al. [4] survey common ensemble-based learning algorithms that are used to for 
classification on imbalanced datasets.  In particular, an overview of common oversampling 
techniques is presented and a taxonomy for ensemble based-learning algorithms on imbalanced 
data is proposed.  Within the taxonomy, there are four main branches: cost-sensitive boosting, 
boosting-based ensembles, bagging-based ensembles, and hybrid ensembles.  Cost-sensitive 
boosting updates the weights of the minority class differently than the majority class.  Boosting-
based ensembles alter the weight distribution used to train the next classifier toward the minority 
class at each iteration.  Bagging-based ensembles use a new sample of data (favoring the minority 
class) for each classifier.  Finally, hybrid ensembles combine both the bagging and boosting 
techniques discussed prior. 
 
SMOTEBoost [1] and RUSBoost [2] fall under the boosting-based ensembles branch and are both 
variations of the AdaBoost M.2 algorithm [5].  The AdaBoost M.2 algorithm is a variation of the 
original AdaBoost algorithm.  In the AdaBoost M.2 algorithm, each instance is initialized a set of 
weights.  For T iterations, a random sample of the data is selected based on the weights and a 
weak leaner is trained on this random sample of data.  The pseudo-loss is calculated and the 
weights on each of the instances in the test set are recalculated.  A complete description of the 
AdaBoost M.2 algorithm can be found in Freund and Schapire’s paper ‘Experiments with a New 
Boosting Algorithm’. 
 
SMOTEBoost utilizes the AdaBoost M.2 algorithm, except randomly injects synthetic samples of 
the minority class into the training set at each boosting round to reduce the bias towards the 
majority class in the model.  The synthetic samples are created using a technique called SMOTE 
(Synthetic Minority Oversampling TEchnique) [6].  SMOTE creates synthetic samples by 
projecting each minority instance towards the difference between that instance and one of it’s k-
nearest neighbors.  The magnitude of the projection is randomly chosen in each dimension.  
Instead of applying SMOTE to the dataset before training an AdaBoost M.2 model, it is found 
that randomly injecting the synthetic samples during each iteration increases performance.  By 
injecting synthetic samples of the minority class instances, the margin for the minority class is 
extended and therefore it should be easier for a weak learner to identify the minority cases.  The 
random injection of synthetic samples also increases the diversity of the classifiers, as each 



classifier is presented with different synthetic samples.  The amount of SMOTE that is added to 
the minority class is a parameter and will vary for different datasets. 
 
RUSBoost (Random Undersampling Boost) utilizes the same algorithm as SMOTEBoost, 
however, instead of randomly injecting synthetic samples into the training set at each boosting 
round, RUSBoost reduces the size of the training set by randomly deleted instances from the 
majority class.  The amount to instances to delete from the majority class is a parameter similar 
to the amount of SMOTE added to the minority class in SMOTEBoost.  The primary advantages 
of RUSBoost compared to SMOTEBoost is in the speed of the algorithm.  RUSBoost decreases 
the size of the training set, while SMOTEBoost increases the size of the training set, meaning 
that RUSBoost has far smaller training times.  Also RUSBoost does not have to generate random 
synthetic samples during each round of boosting.  The primary drawback to RUSBoost is loss of 
information inherent with sampling the majority class.  This is often not the case, however, as 
many datasets show similar if not better performance on RUSBoost than SMOTEBoost. 
 
Many other frameworks and sampling procedures that exist that have not been mentioned and 
are beyond the scope of this paper.  A particular interesting approach is MSMOTEBoost [7]. 
(Modified SMOTEBoost).  In MSMOTE, each instance is labeled as noise, safe, or a border point 
according to the composition to it’s k-nearest neighbors.  In theory, this should reduce the 
amount of noise that is being added to the dataset through the synthetic vectors.  The label of 
can also be incorporated in the AdaBoost M.2 algorithm by reducing the weights of noise points 
during each boosting round.  
 
	  
3 Methodology 
The experiments performed in this paper are applied to a dataset released by Kaggle in the 
National Data Science Bowl competition.  The dataset consists of images of plankton.  The 
dataset is split into a training set and a validation set, where the training set has a class label for 
each image, indicating which species the plankton is from out of 121 possible species.  Because the 
validation set of data contains no class labels, it is not used throughout the paper.  The training 
set contains over 30,000 images.  The training set goes through a series of preprocessing steps as 
described in Section 3.1 to extract features from the raw image and normalize the features.  The 
remaining dataset is then split into a training and testing set of data. 
 
The majority of the algorithms evaluated in this paper rely on creating random synthetic 
instances of the minority class.  Because it be computationally intensive to create new synthetic 
example at each iteration in an ensemble algorithm, synthetic vectors for each instance in the 
dataset are created a priori.  This process is detailed in Section 3.2. 
 
In Section 3.3, SMOTEBoost and RUSBoost are extended to a multinomial classification 
problem.  Each algorithm is written to accept : the base learner, the number of classifiers in the 
ensemble (number of boosting rounds), and a ratio that controls the amount of synthetic minority 
instances that are added before each boosting round.  The SMOTEBoost is then extended to 
handle other random oversampling techniques. 
 
 



3.1 Feature Extraction and Preprocessing 
Before applying any ensemble algorithms for classification, the images in the dataset must first be 
transformed into a feature set using feature extraction.  The images of the plankton are not 
naturally aligned, meaning that the orientation and depth of plankton in the images vary, even if 
they are among the same class.  Sample images for five different classes of plankton are shown in 
Figure 2.  Although plankton of the same class appear similar by the eye, the image sizes, 
rotation of the plankton, and appearance of the plankton can differ greatly.  Therefore, features 
that are extracted must be robust to the rotation and size of the images.  Two different 
techniques fitting this criterion are used: (largest) region features and radial density features. 

 
Figure 2: Images of five plankton for five separate classes show noise amongst the images 



 
Radial image features are computed by looking at the color intensities (grey-scale pixel values) in 
radially symmetric regions across a square image.  Each image is first resized to a NxN square 
image.  The first region is the 4x4 square in the middle of the resized image.  The pixel values in 
the four pixels contained in the 4x4 square are found, and four features describing the mean, 
standard deviation, skew, and kurtosis of the pixel values are used as features.  Next, the square 
expands to an 8x8 square, but excludes any pixels that have already been used (in the 4x4 
square).  The same process is applied to this region and four additional features are found for 
each image.  Figure 3 shows the regions for a 32x32 image.  In this analysis, all the images were 
reshaped to a 16x16 pixel image, resulting in 4 distinct square regions and 16 attributes. 
 
	  

	  
Figure 3: Example of Radial Boundaries For A 32x32 Image 

	  
This second feature extraction technique used in this analysis is region features.  A number of 
mutations are performed on the image, resulting in the ability for the image to segment different 
regions of the image.  Figure 4 shows examples of the image mutation process.  First, the original 
image is converted into a binary scale based on a threshold of the mean pixel value of the image.  
The white pixels in the image are then dilated so that a 4x4 radius of each white pixel is turned 
white.  This dilation is performed to decrease the noise of the image and therefore the noise in the 
amount of regions found.  Regions are then found by finding parts of the image that have no 
connecting white pixels.  The image can then be rotated and resized for direct pixel to pixel 
comparison, but this is not applied to the dataset to avoid redundancy at the benefit of dealing 
with less features in the dataset and decreased training times.  Overall, six region features are 
used in this analysis and are described in Table 1. 
 
 
 
 



Attribute Description 
Number of regions The total number of disconnected regions after dilation 

Eccentricity 
The ratio between the distance between the minor and major axis of the 

largest region 
Convex area The number of pixels of the convex hull image of largest region 

Convex to total area 
The convex area of largest region divided by the total area of largest 

region 

Extent 
The ratio of pixels in the largest region to the pixels in the total bounding 

box 
Filled area The number of pixels of the largest region 

Table 1: Description of Features Extracted By Analyzing Largest Region 
 

 

	  
Figure 4: Series of mutations applied to each image to find the largest region and compare 

pixel by pixel features 
	  
The final dataset consists of 30,336 images and 22 numeric features.  70% of the dataset is then 
randomly partitioned into a train set and 30% is partitioned into a test set to test the 
classification algorithms.	  
	  
	  
3.2 Generating Synthetic Samples and Synthetic Datasets 
Because it is computationally intensive to calculate synthetic data at each round of boosting in 
AdaBoost for multiple iterations and trials, a large amount of synthetic vectors for each instance 
in the training data is created a priori.  In particular, three synthetic datasets are created: (1) 
SMOTE, (2) projection from class centroid (PFCC), and (3) projection from instance to class 
centroid (PFITCC).  As described in Section 2, the SMOTE algorithm finds a k-nearest neighbor 
for each instance and projects the original instance in the direction of the different between the k-
nearest neighbor and that instance at a random magnitude of zero through one.  PFITCC works 
very similarly, except instead of projecting towards the different of a k-nearest neighbor, this 
technique projects the instance in the direction of the difference between that instance and the 
class centroid.  Again, the magnitude of the projection is random in each dimension between zero 
and one.  PFCC is slightly different, in that it does not consider each instance in the train set.  
Instead, it simply looks at the class centroid in the train set to generate synthetic instances.  This 
technique simply projects randomly from the class centroid.  For each technique, the magnitude 
of the projection can be changed using the parameter proj_ratio.  This simply magnifies the 
random vector between zero and one by the proj_ratio.  For example, if it is desired to increase 
the magnitude of the projections by a factor of two, a proj_ratio equal to 2 would be appropriate.   



Algorithms 1-3 describe the three minority oversampling techniques used in this analysis.  In 
SMOTE, the k-nearest neighbors is set to 1, meaning that the projection for each instance is 
always towards the instance’s k-nearest neighbor.  This seems like the most appropriate choice for 
this dataset due to the large magnitude of the number of classes.  Changing this parameter could 
provide interesting results and is saved for future work.  Various settings for the proj_ratio 
parameter are testing ranging 0.1 to 1.0. 
 
Psuedo-algorithm 1: SMOTE	  
Input: Dataset D, parameter proj_ratio 
synthetic_vectors = [] 
For each instance (i) in D 
  Find the k-nearest neighbors of i 
  Randomly choose one of the k-nearest neighbors 
  Calculate the distance between the k-nearest neighbor and i 
  Randomly adjust the magnitude of the difference by multiplying each dimension by a random 
    number between 0 and proj_ratio 
  Add the new difference to the original instance 
  Append the new instance to the synthetic vector list 
 
Psuedo-algorithm 2: PFCC	  
Input: Dataset D, parameter proj_ratio 
synthetic_vectors = [] 
For each class (c) in D: 
  Find the class centroid 
  For N times: 
    Randomly project from the class centroid in each dimension from –proj_ratio to +proj_ratio 
    Append the new instance to the synthetic vector list 
 
Psuedo-algorithm 3: PFITCC	  
Input: Dataset D, parameter proj_ratio 
synthetic_vectors = [] 
For each instance (i) in D 
  Find the class centroid for the instance 
  Calculate the distance between the class centroid and i 
  Randomly adjust the magnitude of the difference by multiplying each dimension by a random 
    number between 0 and proj_ratio 
  Add the new difference to the original instance 
  Append the new instance to the synthetic vector list 
 
The three sampling techniques provide an interesting relationship.  SMOTE should be able to 
provide extended margins for the minority cases, but may be increasing noise in the dataset by 
projecting towards instances that are not of the same class.  Using the cluster centroid instead 
should push the samples towards the cluster centroid, thus reducing noise at the cost of 
decreasing the margin for that particular class.  Using the projections directly from the cluster 
center (PFCC) is an extreme case of PFITCC. 
 



Various datasets are created a priori by combing the synthetic datasets and the dataframe 
containing the test and train data.  Special attention is taken to remove the test instances from 
the synthetic dataset to ensure that the model will not be trained with test data. 
	  
	  
3.3 AdaBoost M.2 With Random Oversampling 
As described in Section 2, SMOTEBoost and RUSBoost are variations of the AdaBoost M.2 
algorithm but randomly vary the training data before the model is fit during each boosting 
round.  Following the same variation, SMOTEBoost is extended to the two additional sampling 
procedures that are described in Section 3.2: PFCC and PFITCC.  The general algorithm for 
these three approaches is outlined in Algorithm 4.  RUSBoost follows nearly the same algorithm, 
however, instead of adding synthetic instances from the minority class, RUSBoost randomly 
deletes some of the instances in the majority class. 
 
Algorithm 4: AdaBoost M.2 With Random Oversample Injection For Multinomial Classification	  
Given: Set S with corresponding labels, parameter synthetic_ratio 
Initialize: Number of synthetic samples to generate for each class 
               Weights of the initialize dataset (set to 1/# instances) 
For t = 1, 2, 3, … , T: 
  Identify hard cases by randomly sampling data points according to their weights 
  For each class: 
    Generate (synthetic_ratio * number of synthetic samples to generate for specific class) 
    synthetic samples 
  Train a weak learner on training set 
  Calculate the error on original data set 
  Update beta 
  Update weights on original data set 
Return: Class with highest vote OR weighted probability predictions 
 
There are only two noticeable differences between Algorithm 4 and SMOTEBoost.  First, 
Algorithm 4 only states to generate synthetic data, where as SMOTEBoost insists that the 
synthetic data is generated using SMOTE.  Second, Algorithm 4 must initialize the number of 
synthetic samples to generate for each class.  SMOTEBoost only concentrates on imbalanced 
binary classification tasks, and thus, does not provide a technique for understanding how many 
synthetic samples of each class must be generated.  In Algorithm 4, the number of synthetic 
samples generated for each class is determined by an initialization of the number of synthetic 
samples needed to generate for each class and a parameter synthetic_ratio.  For this multiclass 
problem, the number of synthetic examples to generate for each class is equal to the number of 
instances of the most majority class minus the number of instances for that particular class.  The 
synthetic_ratio parameter than magnifies that by a factor equal to the ratio.  This is slightly 
different for RUSBoost, where the number of samples for each class is equal to the minimum of 
all the classes or a constant (rus_ratio).	  
	  
	  
	  
	  



4 Results 
Experiments on the algorithms and datasets discussed in Section 3 are applied to the plankton 
dataset to assess performance.  Each classifier is evaluated by accuracy and multiclass log loss.  
Both train and test metrics are calculated to evaluate if the classifier over fits the dataset.  
Multiclass log loss is the multiclass equivalent of the logarithmic loss metric.  This metric is 
improved when the prediction of the correct class is close to one, and is discounted when the 
prediction of the correct class is far from one.  Good performing algorithms have a multiclass log 
loss value close to zero, while worse performing algorithms have higher multiclass log loss values.  
The formula for multiclass log loss is below: 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 =   −
1
𝑁
∗ 𝑦!,! ∗ log  (𝑝!,!)

!

!!!

!

!!!

 

where: 
N is the number of observations 
M is the number of class labels 
yi,j is equal to one when the instance is in class j and zero otherwise 
pi,j is the predicted probability that instance i is in class j 

 
First, the AdaBoost M.2 algorithm along with the random minority sample injections discussed in 
Section 3 are applied to the dataset.  The parameters are presented in Table 2.  The minority 
sampling technique indicates how the training instances are sampled before training the model in 
each iteration of the AdaBoost M.2 algorithm.  No sampling is equivalent to AdaBoost M.2 and 
SMOTE sampling is equivalent to SMOTEBoost.  The number of estimators indicates how many 
models will be trained.  The synthetic ratio controls how many synthetic instances will be added 
to the train set.  A synthetic ratio of 1.0 indicates that the sum of real instances and synthetic 
instances will be equal for all classes.  The performance for all iterations can be found in 
Appendix A. 
 

Parameter Parameter Values 

Minority sampling technique 
None (AdaBoost M.2), SMOTE 

(SMOTEBoost), PFCC, PFITCC, RUS 
Number of estimators (boosting rounds) 2, 5, 10, 20 

Synthetic ratio 0.01, 0.1, 1 
Table 2: Parameters For AdaBoost M.2 Minority Sample Injection Algorithm 

 
As shown in Figure 5, the AdaBoost algorithm performs very poorly and the performance 
actually decreases as the number of iterations grows.  This is likely because of two reasons.  First, 
the AdaBoost algorithm selects the instances that have already been misclassified.  If these 
instances represent noise in the data, then the resulting classifiers in the ensemble are being 
trained on noisy data.  Second, the base learner is a very simple decision tree with a maximum 
depth of 2.  This particular weak learner may not be strong enough for the multiclass problem.  
Future work will need to be put in to test if performance increases as the weak learner actually 
gets stronger. 
 
 
 



 
Figure 5: The AdaBoost model on all datasets actually decreases in performance as the 

number of iterations increase most likely due to the algorithm selecting noisy data or the 
weak classifier not being strong enough – ABM.2 and PFFCBoost1 have infinite multiclass log 

loss values at n_estimators = 20 
 
Finally, a random forest algorithm is applied to the data.  The parameters that are varied are 
presented in Table 3.  The preprocessing sample procedure indicates what dataset is used to train 
the model.  It is important to note that special attention is made to remove all instances in the 
test sample from the train sample to ensure validity of the test data.  The number of synthetic 
minority cases in each dataset is chosen to be the difference between the number of samples in 
the majority class and the number of samples in that particular minority class, thus ensuring a 
balanced set of data.  Different ratios can be tested in future work to optimize class balance.  The 
projection distance refers to the magnitude of the projection in each synthetic instance as 
described in Section 3.2.  The dataset grows very large after the synthetic oversampling 
techniques are applied.  Therefore, training an ensemble classifier becomes computationally 
intensive.  Because of this, the number of trees in the ensemble is limited to 25.  For the original 
dataset, the number of trees is increased to 1,000.  The performance for all iterations can be 
found in Appendix A. 
 
 
 
 
 
 
 



Parameter Parameter Values 
Preprocessing sample procedure None, SMOTE, PFCC, PFITCC 

Projection distance 0.1, 1.0 
Number of estimators (trees) 5,10,25 

Max depth 10, 20, 30 
Table 3: Parameters Random Forest Algorithm 

 
As shown in Figure X, the random forest algorithm performs much better when the number of 
trees is increased, but at diminishing returns for very large number of trees.  The classifiers with 
larger numbers of max depth perform poorly at low number of trees in the forest, but quickly 
improve as trees are added to the forest.  This is likely because the more complex model is overfit 
at number of trees, but is soon generalized as the number of diverse classifiers in the ensemble 
increases.  A similar graph is shown in Figure X but shows the random forest performance on 
synthetically sampled datasets.  The SMOTEBoost algorithm performs the best out of all 
sampling procedures that are tested.  This indicates that the expanding the margin of the 
minority class proves to be the best approach for this multiclass problem.  Overall, random forest 
with the SMOTE dataset is the best performer.  In fact, the random forest on the SMOTE with 
25 trees outperforms the random forest on the original dataset with 1,000 trees.  Also, as seen in 
Figure X, the more complex base learners (higher max depth) increase their performance with 
little trees added to the model.  This is likely because the training set is larger and therefore a 
more complex base learner is necessary to find the patterns in the data.  The downside to this is 
a much longer training time, but because the performance improves quickly in the first few 
iterations, the random forest on the SMOTE dataset is the preferred algorithm. 

 

 
Figure 6: Random Forest (no sample) model performs better when more trees are in the 

ensemble.  More complex base learners perform poor at smaller values of number of trees but 
quickly outperform the more simple base learners whose performance remains constant 



 

 
Figure 7: Random Forest on dataset with synthetic minority oversampling performance shows 

that SMOTEBoost is the best performer and outperforms Random Forest on the original 
dataset with far less trees in the model 

 

 
Figure 8: Random Forest performance for varying depths shows that more complex base 

learners quickly generalize their model only after a few iterations 
 



As seen in Table 4, the top performing ensemble classifier was the random forest classifier on the 
SMOTE dataset.  In general, the random forest classifiers outperformed the AdaBoost classifiers.  
As discussed earlier in this section, this is likely because AdaBoost prefers to sample misclassified 
instances, which are likely noise in the dataset.  The random forest classifier does very well using 
more complicated base learners and the model quickly generalizes to the test set as the forest 
grows with trees. 
 

Algorithm Optimal Parameters Train 
Accuracy 

Test 
Accuracy 

Train 
MC Log 

Loss 

Test MC 
Log Loss 

AdaBoost M.2 n_estimators=2; 
synthetic_rate=.01 

13.75% 14.41% 3.795 3.807 

RUSBoost n_estimators=100, rr=100 7.78% 7.60% 4.189 4.340 
SMOTEBoost n_estimators=2; 

proj_ratio=1.0; 
synthetic_rate=0.1 

4.42% 4.90% 4.656 4.675 

PFITCCBoost n_estimators=2; 
proj_ratio=1.0; 

synthetic_rate=0.1 

5.70% 6.45% 4.551 4.545 

PFCCBoost n_estimators=2; 
proj_ratio=3.0; 

synthetic_rate=0.1 

4.63% 13.69% 3.738 3.793 

Random 
Forest 

n_trees = 1,000; 
max_depth=20 

99.95% 47.58% 0.427 2.084 

Random Forest 
SMOTE 

n_trees = 25; 
max_depth=20 

99.49% 77.85% 0.262 1.255 

Random Forest 
PFITCC 

n_trees = 10; max_depth=20; 
proj_ratio=0.5 

98.36% 60.48% 0.321 1.969 

Random Forest  
PFCC 

n_trees = 25; max_depth=10; 
proj_ratio=0.5 

69.89% 23.27% 1.843 3.224 

Table 4: Optimum results for all ensemble algorithms show Random Forest on the SMOTE 
dataset is the best performing classifier 

	  
	  
5 Conclusions and Future Work 
Various ensemble learning algorithms are applied to the real-world dataset of plankton images in 
an attempt to minimize the multiclass log loss value.  First, boosting algorithms that inject 
random samples of synthetic data (or undersamples for RUSBoost) are applied to the dataset.  
These boosting algorithms did not improve the classification over a even a weak learner, and in 
fact, decreased performance over each iteration.  This is likely because the AdaBoost algorithm 
prefers to select misclassified examples which is often the noisiest points in the data. 
 
Synthetic sampling techniques were also used to preprocess the dataset to balance the minority 
classes and then are applied to the random forest classifier with great success.  The size of the 
dataset is increased due to the injection of many synthetic samples and this causes the training 



time to increase greatly.  That being said, more complex learners (deep decision trees) are seen to 
generalize their model to the test data after adding very few trees to the random forest.  Overall, 
the random forest with the SMOTE dataset is the best performing classifier.  After adding only 
25 trees to the forest, the test multiclass log loss reached a minimum of 1.255, nearly 2 times 
better than any other classifier.  The SMOTE dataset is thought to outperform the datasets with 
synthetic instances based on cluster because the SMOTE dataset increases the margin for the 
minority cases, allowing the classifier to become less biased towards the majority cases. 
 
This research has sparked a lot of curiosity into why the AdaBoost algorithm did not perform 
better.  Future work could be directed to understanding why this occurs and trying to correct it.  
In particular, the MSMOTE boost algorithm described in Section 2 could utilized to increase the 
samples of safe cases and decrease the noise that goes into each iteration of the AdaBoost 
algorithm.  Further, computational limitations capped the number of trees grown in the Random 
Forest SMOTE classifier at 25.  Deeper forests should be attempted on this algorithm to see how 
much more performance can be improved.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



6 Appendix A – Results 
Boosting	  Algorithms	  

bl	   ne	   sd	   sr	   acctrain	   acctest	   kstrain	   kstest	  
DT(max_depth=2)	   2	   m2	   0.01	   13.75%	   14.41%	   3.7948	   3.8073	  
DT(max_depth=2)	   2	   m2	   0.1	   13.72%	   14.40%	   3.7944	   3.8262	  
DT(max_depth=2)	   2	   m2	   1	   13.64%	   14.29%	   3.7925	   3.8236	  
DT(max_depth=2)	   2	   smote1	   0.01	   4.42%	   4.90%	   4.6559	   4.6754	  
DT(max_depth=2)	   2	   smote1	   0.1	   0.11%	   0.09%	   5.8797	   5.8930	  
DT(max_depth=2)	   2	   smote1	   1	   0.10%	   0.09%	   6.9835	   6.9961	  
DT(max_depth=2)	   2	   smote2	   0.01	   4.66%	   5.26%	   4.6078	   4.6299	  
DT(max_depth=2)	   2	   smote2	   0.1	   0.10%	   0.09%	   5.9770	   5.9924	  
DT(max_depth=2)	   2	   smote2	   1	   0.10%	   0.09%	   6.9976	   7.0103	  
DT(max_depth=2)	   2	   smote3	   0.01	   5.20%	   6.16%	   4.6239	   4.6190	  
DT(max_depth=2)	   2	   smote3	   0.1	   0.10%	   0.11%	   6.0109	   6.0076	  
DT(max_depth=2)	   2	   smote3	   1	   0.09%	   0.08%	   6.9576	   6.9669	  
DT(max_depth=2)	   2	   smote01	   0.01	   5.04%	   5.66%	   4.5958	   4.6237	  
DT(max_depth=2)	   2	   smote01	   0.1	   0.10%	   0.11%	   5.9084	   5.9142	  
DT(max_depth=2)	   2	   smote01	   1	   0.10%	   0.11%	   6.9164	   6.9253	  
DT(max_depth=2)	   2	   smote05	   0.01	   4.72%	   5.38%	   4.6610	   4.6789	  
DT(max_depth=2)	   2	   smote05	   0.1	   0.10%	   0.10%	   5.9194	   5.9236	  
DT(max_depth=2)	   2	   smote05	   1	   0.10%	   0.10%	   6.9248	   6.9341	  
DT(max_depth=2)	   5	   m2	   0.01	   13.84%	   14.70%	   8.4945	   8.4205	  
DT(max_depth=2)	   5	   m2	   0.1	   13.95%	   14.77%	   7.7386	   7.6613	  
DT(max_depth=2)	   5	   m2	   1	   14.54%	   15.30%	   8.8064	   8.7183	  
DT(max_depth=2)	   5	   smote1	   0.01	   4.53%	   5.09%	   4.7542	   4.7597	  
DT(max_depth=2)	   5	   smote1	   0.1	   0.10%	   0.09%	   5.9719	   5.9844	  
DT(max_depth=2)	   5	   smote1	   1	   0.10%	   0.09%	   6.9846	   6.9970	  
DT(max_depth=2)	   5	   smote2	   0.01	   4.70%	   5.26%	   4.8515	   4.8456	  
DT(max_depth=2)	   5	   smote2	   0.1	   0.10%	   0.09%	   5.9799	   5.9838	  
DT(max_depth=2)	   5	   smote2	   1	   0.10%	   0.09%	   6.9478	   6.9569	  
DT(max_depth=2)	   5	   smote3	   0.01	   4.70%	   5.24%	   4.7780	   4.7591	  
DT(max_depth=2)	   5	   smote3	   0.1	   0.09%	   0.08%	   5.9387	   5.9353	  
DT(max_depth=2)	   5	   smote3	   1	   0.09%	   0.09%	   7.0044	   7.0112	  
DT(max_depth=2)	   5	   smote01	   0.01	   3.34%	   3.98%	   4.8702	   4.8597	  
DT(max_depth=2)	   5	   smote01	   0.1	   0.12%	   0.14%	   5.7745	   5.7711	  
DT(max_depth=2)	   5	   smote01	   1	   0.10%	   0.11%	   6.9155	   6.9237	  
DT(max_depth=2)	   5	   smote05	   0.01	   3.37%	   3.99%	   4.7383	   4.7303	  
DT(max_depth=2)	   5	   smote05	   0.1	   0.10%	   0.10%	   5.9679	   5.9849	  
DT(max_depth=2)	   5	   smote05	   1	   0.10%	   0.10%	   6.9223	   6.9317	  
DT(max_depth=2)	   10	   m2	   0.01	   13.97%	   14.73%	   8.1956	   8.1911	  



DT(max_depth=2)	   10	   m2	   0.1	   13.82%	   14.60%	   8.7592	   8.6410	  
DT(max_depth=2)	   10	   m2	   1	   13.91%	   14.68%	   9.2985	   9.2883	  
DT(max_depth=2)	   10	   smote1	   0.01	   4.00%	   4.55%	   9.4871	   9.4283	  
DT(max_depth=2)	   10	   smote1	   0.1	   0.10%	   0.09%	   5.9711	   5.9953	  
DT(max_depth=2)	   10	   smote1	   1	   0.10%	   0.09%	   6.9852	   6.9984	  
DT(max_depth=2)	   10	   smote2	   0.01	   4.11%	   4.68%	   10.3752	   10.3766	  
DT(max_depth=2)	   10	   smote2	   0.1	   0.09%	   0.09%	   5.9969	   6.0099	  
DT(max_depth=2)	   10	   smote2	   1	   0.10%	   0.09%	   6.9985	   7.0114	  
DT(max_depth=2)	   10	   smote3	   0.01	   4.19%	   4.84%	   9.4191	   9.4183	  
DT(max_depth=2)	   10	   smote3	   0.1	   0.08%	   0.08%	   6.0107	   6.0173	  
DT(max_depth=2)	   10	   smote3	   1	   0.09%	   0.08%	   6.9506	   6.9597	  
DT(max_depth=2)	   10	   smote01	   0.01	   3.36%	   3.97%	   6.6498	   6.6101	  
DT(max_depth=2)	   10	   smote01	   0.1	   0.10%	   0.11%	   5.9121	   5.9202	  
DT(max_depth=2)	   10	   smote01	   1	   0.10%	   0.11%	   6.9234	   6.9300	  
DT(max_depth=2)	   10	   smote05	   0.01	   3.77%	   4.27%	   9.6985	   9.6546	  
DT(max_depth=2)	   10	   smote05	   0.1	   0.10%	   0.10%	   5.9179	   5.9238	  
DT(max_depth=2)	   10	   smote05	   1	   0.10%	   0.10%	   6.9293	   6.9365	  
DT(max_depth=2)	   20	   m2	   0.01	   13.92%	   14.74%	   8.7495	   8.8442	  
DT(max_depth=2)	   20	   m2	   0.1	   0.11%	   0.11%	   n/a	   n/a	  
DT(max_depth=2)	   20	   m2	   1	   14.03%	   14.96%	   n/a	   n/a	  
DT(max_depth=2)	   20	   smote1	   0.01	   0.07%	   0.05%	   n/a	   n/a	  
DT(max_depth=2)	   20	   smote1	   0.1	   0.10%	   0.09%	   5.9728	   5.9968	  
DT(max_depth=2)	   20	   smote1	   1	   0.10%	   0.09%	   6.9837	   6.9976	  
DT(max_depth=2)	   20	   smote2	   0.01	   0.07%	   0.05%	   n/a	   n/a	  
DT(max_depth=2)	   20	   smote2	   0.1	   0.10%	   0.11%	   6.0528	   6.0619	  
DT(max_depth=2)	   20	   smote2	   1	   0.10%	   0.09%	   6.9972	   7.0098	  
DT(max_depth=2)	   20	   smote3	   0.01	   4.27%	   4.88%	   8.1236	   8.2222	  
DT(max_depth=2)	   20	   smote3	   0.1	   0.10%	   0.11%	   6.0215	   6.0144	  
DT(max_depth=2)	   20	   smote3	   1	   0.09%	   0.08%	   7.0238	   7.0318	  
DT(max_depth=2)	   20	   smote01	   0.01	   3.96%	   4.56%	   9.2005	   9.2072	  
DT(max_depth=2)	   20	   smote01	   0.1	   0.10%	   0.11%	   5.9120	   5.9266	  
DT(max_depth=2)	   20	   smote01	   1	   0.10%	   0.11%	   6.9168	   6.9260	  
DT(max_depth=2)	   20	   smote05	   0.01	   0.07%	   0.08%	   n/a	   n/a	  
DT(max_depth=2)	   20	   smote05	   0.1	   0.10%	   0.10%	   5.9151	   5.9226	  
DT(max_depth=2)	   20	   smote05	   1	   0.10%	   0.10%	   6.9252	   6.9345	  
DT(max_depth=2)	   2	   PFFC1	   0.01	   14.39%	   13.75%	   3.7479	   3.7989	  
DT(max_depth=2)	   2	   PFFC1	   0.1	   14.25%	   13.67%	   3.8901	   3.9368	  
DT(max_depth=2)	   2	   PFFC1	   1	   6.78%	   6.84%	   4.7206	   4.7458	  
DT(max_depth=2)	   2	   PFFC2	   0.01	   14.38%	   13.75%	   3.7424	   3.7954	  
DT(max_depth=2)	   2	   PFFC2	   0.1	   14.90%	   14.34%	   3.8516	   3.8839	  



DT(max_depth=2)	   2	   PFFC2	   1	   7.40%	   7.35%	   4.7269	   4.7553	  
DT(max_depth=2)	   2	   PFFC3	   0.01	   14.63%	   13.96%	   3.7381	   3.7935	  
DT(max_depth=2)	   2	   PFFC3	   0.1	   14.82%	   14.41%	   3.8726	   3.9041	  
DT(max_depth=2)	   2	   PFFC3	   1	   7.27%	   7.22%	   4.7159	   4.7203	  
DT(max_depth=2)	   2	   PFFC0.1	   0.01	   14.36%	   13.73%	   3.7718	   3.8325	  
DT(max_depth=2)	   2	   PFFC0.1	   0.1	   14.38%	   13.74%	   3.8929	   3.9459	  
DT(max_depth=2)	   2	   PFFC0.1	   1	   6.43%	   6.42%	   4.6912	   4.7291	  
DT(max_depth=2)	   2	   PFFC0.5	   0.01	   14.28%	   13.66%	   3.7746	   3.8263	  
DT(max_depth=2)	   2	   PFFC0.5	   0.1	   14.17%	   13.80%	   3.8956	   3.9469	  
DT(max_depth=2)	   2	   PFFC0.5	   1	   6.56%	   6.54%	   4.7580	   4.7815	  
DT(max_depth=2)	   5	   PFFC1	   0.01	   14.36%	   13.85%	   6.9594	   6.8914	  
DT(max_depth=2)	   5	   PFFC1	   0.1	   14.20%	   13.84%	   4.8619	   4.8343	  
DT(max_depth=2)	   5	   PFFC1	   1	   11.00%	   10.78%	   4.6271	   4.6524	  
DT(max_depth=2)	   5	   PFFC2	   0.01	   14.34%	   13.81%	   6.9701	   6.9357	  
DT(max_depth=2)	   5	   PFFC2	   0.1	   14.40%	   13.76%	   5.0362	   4.9784	  
DT(max_depth=2)	   5	   PFFC2	   1	   7.40%	   7.32%	   4.7497	   4.7837	  
DT(max_depth=2)	   5	   PFFC3	   0.01	   14.48%	   13.98%	   7.5928	   7.5666	  
DT(max_depth=2)	   5	   PFFC3	   0.1	   14.82%	   14.40%	   4.9921	   4.9479	  
DT(max_depth=2)	   5	   PFFC3	   1	   7.30%	   7.25%	   4.7458	   4.7644	  
DT(max_depth=2)	   5	   PFFC0.1	   0.01	   14.32%	   13.81%	   6.8529	   6.8527	  
DT(max_depth=2)	   5	   PFFC0.1	   0.1	   14.30%	   13.79%	   6.1076	   6.1352	  
DT(max_depth=2)	   5	   PFFC0.1	   1	   14.43%	   13.74%	   4.4901	   4.5230	  
DT(max_depth=2)	   5	   PFFC0.5	   0.01	   14.34%	   14.01%	   6.0305	   6.0025	  
DT(max_depth=2)	   5	   PFFC0.5	   0.1	   14.25%	   13.88%	   5.8942	   5.8299	  
DT(max_depth=2)	   5	   PFFC0.5	   1	   9.23%	   8.97%	   4.5412	   4.5864	  
DT(max_depth=2)	   10	   PFFC1	   0.01	   14.40%	   13.87%	   7.5799	   7.4431	  
DT(max_depth=2)	   10	   PFFC1	   0.1	   14.20%	   13.66%	   5.5445	   5.4122	  
DT(max_depth=2)	   10	   PFFC1	   1	   6.32%	   5.99%	   5.5176	   5.4582	  
DT(max_depth=2)	   10	   PFFC2	   0.01	   14.42%	   13.97%	   7.8320	   7.7040	  
DT(max_depth=2)	   10	   PFFC2	   0.1	   14.45%	   13.85%	   n/a	   n/a	  
DT(max_depth=2)	   10	   PFFC2	   1	   6.85%	   6.65%	   5.3508	   5.3412	  
DT(max_depth=2)	   10	   PFFC3	   0.01	   14.34%	   13.85%	   7.1594	   7.1105	  
DT(max_depth=2)	   10	   PFFC3	   0.1	   14.52%	   13.98%	   5.6136	   5.6338	  
DT(max_depth=2)	   10	   PFFC3	   1	   6.87%	   6.67%	   5.1924	   5.1752	  
DT(max_depth=2)	   10	   PFFC0.1	   0.01	   14.33%	   13.79%	   7.5982	   7.5606	  
DT(max_depth=2)	   10	   PFFC0.1	   0.1	   14.29%	   13.77%	   n/a	   n/a	  
DT(max_depth=2)	   10	   PFFC0.1	   1	   13.73%	   13.37%	   6.9196	   6.7867	  
DT(max_depth=2)	   10	   PFFC0.5	   0.01	   14.40%	   13.88%	   7.0989	   7.0338	  
DT(max_depth=2)	   10	   PFFC0.5	   0.1	   14.25%	   13.87%	   n/a	   n/a	  
DT(max_depth=2)	   10	   PFFC0.5	   1	   9.24%	   8.99%	   5.4483	   5.3962	  



DT(max_depth=2)	   20	   PFFC1	   0.01	   14.31%	   13.78%	   7.8000	   7.6724	  
DT(max_depth=2)	   20	   PFFC1	   0.1	   0.58%	   0.48%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC1	   1	   0.58%	   0.47%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC2	   0.01	   0.20%	   0.20%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC2	   0.1	   0.13%	   0.14%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC2	   1	   0.11%	   0.14%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC3	   0.01	   0.16%	   0.11%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC3	   0.1	   0.19%	   0.21%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC3	   1	   0.12%	   0.12%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC0.1	   0.01	   14.40%	   13.89%	   7.5922	   7.5077	  
DT(max_depth=2)	   20	   PFFC0.1	   0.1	   0.65%	   0.57%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC0.1	   1	   0.73%	   0.60%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC0.5	   0.01	   0.63%	   0.57%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC0.5	   0.1	   0.78%	   0.65%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFFC0.5	   1	   0.61%	   0.54%	   n/a	   n/a	  
DT(max_depth=2)	   2	   PFITCC1	   0.01	   5.70%	   6.45%	   4.5512	   4.5453	  
DT(max_depth=2)	   2	   PFITCC1	   0.1	   0.10%	   0.08%	   6.0651	   6.0671	  
DT(max_depth=2)	   2	   PFITCC1	   1	   0.10%	   0.12%	   7.0764	   7.0847	  
DT(max_depth=2)	   2	   PFITCC2	   0.01	   0.10%	   0.14%	   4.6972	   4.6984	  
DT(max_depth=2)	   2	   PFITCC2	   0.1	   0.06%	   0.05%	   6.1302	   6.1209	  
DT(max_depth=2)	   2	   PFITCC2	   1	   0.08%	   0.12%	   6.9633	   6.9533	  
DT(max_depth=2)	   2	   PFITCC3	   0.01	   4.77%	   5.62%	   4.8223	   4.8241	  
DT(max_depth=2)	   2	   PFITCC3	   0.1	   0.05%	   0.10%	   6.1022	   6.0950	  
DT(max_depth=2)	   2	   PFITCC3	   1	   0.08%	   0.05%	   7.1396	   7.1442	  
DT(max_depth=2)	   2	   PFITCC0.1	   0.01	   4.94%	   5.73%	   4.6686	   4.6765	  
DT(max_depth=2)	   2	   PFITCC0.1	   0.1	   0.10%	   0.10%	   5.9749	   5.9824	  
DT(max_depth=2)	   2	   PFITCC0.1	   1	   0.11%	   0.12%	   6.9570	   6.9625	  
DT(max_depth=2)	   2	   PFITCC0.5	   0.01	   4.91%	   5.70%	   4.7499	   4.7429	  
DT(max_depth=2)	   2	   PFITCC0.5	   0.1	   0.12%	   0.13%	   6.0304	   6.0320	  
DT(max_depth=2)	   2	   PFITCC0.5	   1	   0.11%	   0.09%	   7.0721	   7.0806	  
DT(max_depth=2)	   5	   PFITCC1	   0.01	   4.79%	   5.38%	   4.7473	   4.7306	  
DT(max_depth=2)	   5	   PFITCC1	   0.1	   0.12%	   0.14%	   5.8455	   5.8307	  
DT(max_depth=2)	   5	   PFITCC1	   1	   0.10%	   0.12%	   7.0724	   7.0811	  
DT(max_depth=2)	   5	   PFITCC2	   0.01	   4.87%	   5.55%	   4.9140	   4.9152	  
DT(max_depth=2)	   5	   PFITCC2	   0.1	   0.12%	   0.16%	   5.8796	   5.8654	  
DT(max_depth=2)	   5	   PFITCC2	   1	   0.08%	   0.12%	   6.9706	   6.9607	  
DT(max_depth=2)	   5	   PFITCC3	   0.01	   5.10%	   5.79%	   4.8553	   4.8361	  
DT(max_depth=2)	   5	   PFITCC3	   0.1	   0.08%	   0.05%	   6.0968	   6.0872	  
DT(max_depth=2)	   5	   PFITCC3	   1	   0.08%	   0.05%	   7.1371	   7.1416	  
DT(max_depth=2)	   5	   PFITCC0.1	   0.01	   8.22%	   8.75%	   5.4570	   5.4256	  



DT(max_depth=2)	   5	   PFITCC0.1	   0.1	   0.11%	   0.11%	   5.9677	   5.9761	  
DT(max_depth=2)	   5	   PFITCC0.1	   1	   0.11%	   0.12%	   6.9561	   6.9642	  
DT(max_depth=2)	   5	   PFITCC0.5	   0.01	   4.59%	   5.23%	   4.7656	   4.7444	  
DT(max_depth=2)	   5	   PFITCC0.5	   0.1	   0.10%	   0.08%	   6.0667	   6.0644	  
DT(max_depth=2)	   5	   PFITCC0.5	   1	   0.11%	   0.09%	   7.0695	   7.0776	  
DT(max_depth=2)	   10	   PFITCC1	   0.01	   4.71%	   5.31%	   9.0054	   9.0589	  
DT(max_depth=2)	   10	   PFITCC1	   0.1	   0.11%	   0.14%	   5.9447	   5.9314	  
DT(max_depth=2)	   10	   PFITCC1	   1	   0.10%	   0.12%	   7.0715	   7.0802	  
DT(max_depth=2)	   10	   PFITCC2	   0.01	   5.12%	   5.80%	   9.2794	   9.3348	  
DT(max_depth=2)	   10	   PFITCC2	   0.1	   0.07%	   0.07%	   6.1033	   6.0907	  
DT(max_depth=2)	   10	   PFITCC2	   1	   0.08%	   0.12%	   6.9625	   6.9526	  
DT(max_depth=2)	   10	   PFITCC3	   0.01	   5.18%	   5.85%	   7.7897	   7.7844	  
DT(max_depth=2)	   10	   PFITCC3	   0.1	   0.06%	   0.05%	   6.1192	   6.1093	  
DT(max_depth=2)	   10	   PFITCC3	   1	   0.08%	   0.05%	   7.1334	   7.1378	  
DT(max_depth=2)	   10	   PFITCC0.1	   0.01	   9.71%	   10.26%	   7.0443	   7.1659	  
DT(max_depth=2)	   10	   PFITCC0.1	   0.1	   0.11%	   0.13%	   5.8398	   5.8457	  
DT(max_depth=2)	   10	   PFITCC0.1	   1	   0.11%	   0.12%	   6.9551	   6.9631	  
DT(max_depth=2)	   10	   PFITCC0.5	   0.01	   4.43%	   5.11%	   6.8456	   6.8082	  
DT(max_depth=2)	   10	   PFITCC0.5	   0.1	   0.12%	   0.13%	   6.0394	   6.0489	  
DT(max_depth=2)	   10	   PFITCC0.5	   1	   0.10%	   0.09%	   7.0621	   7.0612	  
DT(max_depth=2)	   20	   PFITCC1	   0.01	   4.69%	   5.24%	   6.2073	   6.2826	  
DT(max_depth=2)	   20	   PFITCC1	   0.1	   0.09%	   0.11%	   5.9558	   5.9408	  
DT(max_depth=2)	   20	   PFITCC1	   1	   0.10%	   0.12%	   7.0713	   7.0801	  
DT(max_depth=2)	   20	   PFITCC2	   0.01	   0.03%	   0.05%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFITCC2	   0.1	   0.09%	   0.12%	   5.9760	   5.9663	  
DT(max_depth=2)	   20	   PFITCC2	   1	   0.08%	   0.12%	   6.9625	   6.9521	  
DT(max_depth=2)	   20	   PFITCC3	   0.01	   0.05%	   0.07%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFITCC3	   0.1	   0.06%	   0.05%	   6.1206	   6.1087	  
DT(max_depth=2)	   20	   PFITCC3	   1	   0.08%	   0.05%	   7.1392	   7.1439	  
DT(max_depth=2)	   20	   PFITCC0.1	   0.01	   0.08%	   0.07%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFITCC0.1	   0.1	   0.12%	   0.15%	   5.8024	   5.7965	  
DT(max_depth=2)	   20	   PFITCC0.1	   1	   0.12%	   0.15%	   6.8158	   6.8158	  
DT(max_depth=2)	   20	   PFITCC0.5	   0.01	   0.06%	   0.07%	   n/a	   n/a	  
DT(max_depth=2)	   20	   PFITCC0.5	   0.1	   0.12%	   0.13%	   6.0263	   6.0279	  
DT(max_depth=2)	   20	   PFITCC0.5	   1	   0.11%	   0.09%	   7.0743	   7.0828	  

 
 
 
 
 
 



Random	  Forest	  Classifer	  -‐	  No	  Sample	  
ne	   md	   accuracy_train	   accuracy_test	   mc_log_loss_train	   mc_log_loss_test	  
5	   2	   15.86%	   15.96%	   3.65646221	   3.659814638	  
5	   5	   27.68%	   26.95%	   2.978382498	   3.053164438	  
5	   8	   40.00%	   34.56%	   2.384451244	   2.761472697	  
5	   12	   59.76%	   38.04%	   1.606248503	   3.41803069	  
5	   20	   92.52%	   36.37%	   0.579238351	   12.15523472	  
10	   2	   18.12%	   18.20%	   3.644333379	   3.650867267	  
10	   5	   29.61%	   28.75%	   2.96623739	   3.02175835	  
10	   8	   41.84%	   36.42%	   2.323205605	   2.604492179	  
10	   12	   66.10%	   41.60%	   1.479559115	   2.77784376	  
10	   20	   98.27%	   40.45%	   0.454570525	   8.179245335	  
50	   2	   18.86%	   18.84%	   3.589976148	   3.597810412	  
50	   5	   31.28%	   30.71%	   2.873714376	   2.930872392	  
50	   8	   44.49%	   38.78%	   2.257638008	   2.499522584	  
50	   12	   73.36%	   44.00%	   1.402655152	   2.248857407	  
50	   20	   99.90%	   45.86%	   0.436081925	   3.345892459	  
100	   2	   19.07%	   19.01%	   3.613359275	   3.621705954	  
100	   5	   31.19%	   30.29%	   2.892438585	   2.949323645	  
100	   8	   44.71%	   38.90%	   2.251457676	   2.494842505	  
100	   12	   74.85%	   44.65%	   1.386887025	   2.200414008	  
100	   20	   99.89%	   47.14%	   0.431681969	   2.773702755	  
500	   2	   19.54%	   19.63%	   3.595192243	   3.60131927	  
500	   5	   31.64%	   31.01%	   2.872620474	   2.931047333	  
500	   8	   45.10%	   39.08%	   2.248481384	   2.488562245	  
500	   12	   74.73%	   44.96%	   1.386963368	   2.169464222	  
500	   20	   99.94%	   47.77%	   0.426680803	   2.146094544	  
1000	   2	   19.45%	   19.47%	   3.600660372	   3.607777661	  
1000	   5	   31.60%	   30.81%	   2.877222381	   2.934210603	  
1000	   8	   45.06%	   39.14%	   2.250669617	   2.491227361	  
1000	   12	   74.80%	   44.99%	   1.38519683	   2.164146552	  
1000	   20	   99.95%	   47.58%	   0.426608441	   2.083879454	  
 
 
 
 
 
 
 
 
 



Random	  Forest	  -‐	  SMOTE	  
ne	   md	   syn_ratio	   accuracy_train	   accuracy_test	   mc_log_loss_train	   mc_log_loss_test	  
5	   10	   0.5	   51.89%	   25.85%	   2.179412467	   2.949158335	  
5	   20	   0.5	   96.69%	   64.73%	   0.312032372	   2.112198461	  
5	   30	   0.5	   99.66%	   71.84%	   0.074481757	   4.196351346	  
10	   10	   0.5	   58.78%	   31.53%	   2.064751102	   2.809229298	  
10	   20	   0.5	   99.04%	   74.00%	   0.244772965	   1.445118484	  
10	   30	   0.5	   99.97%	   80.15%	   0.066079415	   2.231766901	  
25	   10	   0.5	   64.01%	   33.93%	   2.023840689	   2.787906274	  
25	   20	   0.5	   99.49%	   77.85%	   0.262312275	   1.254746625	  
25	   30	   0.5	   100.00%	   85.20%	   0.064746901	   1.293404519	  
5	   10	   1	   50.69%	   25.97%	   2.209165784	   2.969920688	  
5	   20	   1	   96.02%	   55.04%	   0.346688738	   2.746045132	  
5	   30	   1	   99.42%	   59.07%	   0.110902087	   6.288656555	  
10	   10	   1	   57.49%	   30.40%	   2.133689492	   2.874051295	  
10	   20	   1	   98.41%	   63.08%	   0.314590669	   1.784275036	  
10	   30	   1	   99.96%	   69.08%	   0.094518857	   3.354829784	  
25	   10	   1	   61.14%	   32.27%	   2.119691166	   2.864756031	  
25	   20	   1	   99.39%	   69.26%	   0.294716897	   1.517997831	  
25	   30	   1	   100.00%	   76.30%	   0.090615809	   1.712460275	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



Random	  Forest	  -‐	  PFITCC	  
ne	   md	   syn_ratio	   accuracy_train	   accuracy_test	   mc_los_log_train	   mc_loss_log_test	  
5	   10	   0.5	   49.37%	   27.95%	   2.296690699	   2.959694874	  
5	   20	   0.5	   95.78%	   52.38%	   0.359809383	   3.018893921	  
5	   30	   0.5	   99.33%	   55.01%	   0.129170639	   7.835474459	  
10	   10	   0.5	   56.24%	   30.19%	   2.209740208	   2.899273712	  
10	   20	   0.5	   98.36%	   60.48%	   0.320298596	   1.969066367	  
10	   30	   0.5	   99.94%	   64.29%	   0.105409343	   4.018578153	  
25	   10	   0.5	   60.84%	   33.27%	   2.17405015	   2.866985382	  
25	   20	   0.5	   99.27%	   66.91%	   0.316588363	   1.586020443	  
25	   30	   0.5	   100.00%	   71.55%	   0.102343941	   1.994630145	  
5	   10	   1	   45.72%	   25.75%	   2.454661142	   3.068062858	  
5	   20	   1	   94.64%	   43.04%	   0.442414416	   3.740611706	  
5	   30	   1	   99.00%	   44.04%	   0.174626332	   10.2676816	  
10	   10	   1	   51.34%	   28.69%	   2.431257895	   3.030722939	  
10	   20	   1	   97.70%	   50.87%	   0.398527537	   2.372574461	  
10	   30	   1	   99.91%	   51.54%	   0.148396292	   6.135746862	  
25	   10	   1	   56.89%	   31.10%	   2.361427182	   2.969330032	  
25	   20	   1	   98.98%	   55.91%	   0.378728422	   1.925858317	  
25	   30	   1	   99.99%	   58.70%	   0.141907109	   3.11784503	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



Random	  Forest	  -‐	  PFCC	  
ne	   md	   syn_ratio	   accuracy_train	   accuracy_test	   ks_train	   ks_test	  
5	   10	   0.5	   52.11%	   18.60%	   2.266635744	   3.750206689	  
5	   20	   0.5	   92.96%	   30.24%	   0.436304996	   10.95185734	  
5	   30	   0.5	   97.72%	   30.16%	   0.195417296	   16.47959482	  
10	   10	   0.5	   61.22%	   20.19%	   2.069884558	   3.52627106	  
10	   20	   0.5	   94.01%	   33.75%	   0.506758027	   5.901364403	  
10	   30	   0.5	   99.17%	   33.48%	   0.165254697	   12.35572728	  
25	   10	   0.5	   69.89%	   23.27%	   1.842882604	   3.223602055	  
25	   20	   0.5	   95.76%	   36.04%	   0.490112406	   3.963745432	  
25	   30	   0.5	   99.60%	   37.29%	   0.151962956	   8.043519976	  
5	   10	   1	   33.52%	   18.00%	   2.818005436	   3.710479788	  
5	   20	   1	   62.08%	   27.10%	   1.645831955	   5.444494388	  
5	   30	   1	   87.19%	   28.08%	   0.765767616	   11.87629111	  
10	   10	   1	   37.22%	   20.57%	   2.775915867	   3.489148117	  
10	   20	   1	   71.11%	   29.67%	   1.486865664	   4.280336517	  
10	   30	   1	   92.54%	   32.20%	   0.732354435	   7.79340079	  
25	   10	   1	   41.34%	   20.96%	   2.68581997	   3.414183245	  
25	   20	   1	   75.71%	   31.38%	   1.475895377	   3.419149224	  
25	   30	   1	   96.98%	   34.35%	   0.664771429	   5.40673444	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



References 
[1] Chawla, N. V.; Lazarevic, A.; Hall, L. O. & Bowyer, K. W. (2003), SMOTEBoost: Improving 

Prediction of the Minority Class in Boosting., in Nada Lavrac; Dragan Gamberger; Hendrik 
Blockeel & Ljupco Todorovski, ed., 'PKDD' , Springer, , pp. 107-119 . 
 

[2] Seiffert, C.; Khoshgoftaar, T. M.; Hulse, J. V. & Napolitano, A. (2008), RUSBoost: Improving 
classification performance when training data is skewed., in 'ICPR' , IEEE, , pp. 1-4 . 
 

[3] Dollár, P.; Tu, Z.; Tao, H. & Belongie, S. (2007), Feature Mining for Image 
Classification., in 'CVPR' , IEEE Computer Society, . 
 

[4] Galar, M.; Fernández, A.; Tartas, E. B.; Sola, H. B. & Herrera, F. (2012), 'A Review on 
Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based 
Approaches.', IEEE Transactions on Systems, Man, and Cybernetics, Part C 42 (4) , 463-484  
 

[5] AdaBoost M.2: Y.FreundandR.Schapire,“Experimentswithanewboostingalgorithm,” in Proc. 
13th Int. Conf. Mach. Learn., 1996, pp. 148–156. 
 

[6] Chawla, N. V.; Bowyer, K. W.; Hall, L. O. & Kegelmeyer, W. P. (2002), 'SMOTE: Synthetic 
Minority Over-sampling Technique',Journal of Artificial Intelligence Research 16 , 321--357 . 

 
[7] S. Hu, Y. Liang, L. Ma, and Y. He, “MSMOTE: Improving classification performance when 

training data is imbalanced,” in Proc. 2nd Int. Workshop Comput. Sci. Eng., 2009, vol. 2, pp. 
13–17. 

 
 


